前言
python标准库提供线程和多处理模块来编写相应的多线程/多进程代码,但当项目达到一定规模时,频繁地创建/销毁进程或线程是非常消耗资源的,此时我们必须编写自己的线程池/进程池来交换时间空间。但是从Python3.2开始,标准库为我们提供了并发的。Futures模块,它提供两个类:ThreadPool Executor和ProcessPool Executor。它实现线程和多处理的进一步抽象,并为编写线程池/进程池提供直接支持。
Executor和Future
concurrent.futures模块的基础是Exectuor,Executor是一个抽象类,它不能被直接使用。但是它提供的两个子类ThreadPoolExecutor和ProcessPoolExecutor却是非常有用,顾名思义两者分别被用来创建线程池和进程池的代码。我们可以将相应的tasks直接放入线程池/进程池,不需要维护Queue来操心死锁的问题,线程池/进程池会自动帮我们调度。
使用submit来操作线程池/进程池
我们先通过下面这段代码来了解一下线程池的概念
from concurrent.futures import ThreadPoolExecutor
import time
def return_future_result(message):
time.sleep(2)
return message
pool = ThreadPoolExecutor(max_workers=2) # 创建一个最大可容纳2个task的线程池
future1 = pool.submit(return_future_result, ("hello")) # 往线程池里面加入一个task
future2 = pool.submit(return_future_result, ("world")) # 往线程池里面加入一个task
print(future1.done()) # 判断task1是否结束
time.sleep(3)
print(future2.done()) # 判断task2是否结束
print(future1.result()) # 查看task1返回的结果
print(future2.result()) # 查看task2返回的结果
让我们根据操作结果进行分析。我们使用submit方法将任务添加到线程池,submit返回一个将来的对象,这可以简单地理解为将来要完成的操作。在第一份印刷声明中,很明显我们的未来1由于时间的原因没有完成。睡眠(2),因为我们使用时间挂起了主线程。sleep(3),所以到第二个print语句时,线程池中的所有任务都已完成。
False
True
hello
world
# 在上述程序执行的过程中,通过ps命令我们可以看到三个线程同时在后台运行
ziwenxie :: ~ » ps -eLf | grep python
ziwenxie 8361 7557 8361 3 3 19:45 pts/0 00:00:00 python example1.py
ziwenxie 8361 7557 8362 0 3 19:45 pts/0 00:00:00 python example1.py
ziwenxie 8361 7557 8363 0 3 19:45 pts/0 00:00:00 python example1.p
上面的代码我们也可以改写为进程池形式,api和线程池如出一辙,我就不罗嗦了。
from concurrent.futures import ProcessPoolExecutor
import time
def return_future_result(message):
time.sleep(2)
return message
pool = ProcessPoolExecutor(max_workers=2)
future1 = pool.submit(return_future_result, ("hello"))
future2 = pool.submit(return_future_result, ("world"))
print(future1.done())
time.sleep(3)
print(future2.done())
print(future1.result())
print(future2.result())
下面是运行结果
False
True
hello
world
ziwenxie :: ~ » ps -eLf | grep python
ziwenxie 8560 7557 8560 3 3 19:53 pts/0 00:00:00 python example2.py
ziwenxie 8560 7557 8563 0 3 19:53 pts/0 00:00:00 python example2.py
ziwenxie 8560 7557 8564 0 3 19:53 pts/0 00:00:00 python example2.py
ziwenxie 8561 8560 8561 0 1 19:53 pts/0 00:00:00 python example2.py
ziwenxie 8562 8560 8562 0 1 19:53 pts/0 00:00:00 python example2.py
使用map/wait来操作线程池/进程池
除了submit,Exectuor还为我们提供了map方法,和内建的map用法类似,下面我们通过两个例子来比较一下两者的区别。
使用submit操作回顾
import concurrent.futures
import urllib.request
URLS = ['http://httpbin.org', 'http://example.com/', 'https://api.github.com/']
def load_url(url, timeout):
with urllib.request.urlopen(url, timeout=timeout) as conn:
return conn.read()
# We can use a with statement to ensure threads are cleaned up promptly
with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
# Start the load operations and mark each future with its URL
future_to_url = {executor.submit(load_url, url, 60): url for url in URLS}
for future in concurrent.futures.as_completed(future_to_url):
url = future_to_url[future]
try:
data = future.result()
except Exception as exc:
print('%r generated an exception: %s' % (url, exc))
else:
print('%r page is %d bytes' % (url, len(data)))
从运行结果可以看出,as_completed不是按照URLS列表元素的顺序返回的。
'http://example.com/' page is 1270 byte
'https://api.github.com/' page is 2039 bytes
'http://httpbin.org' page is 12150 bytes
使用map
import concurrent.futures
import urllib.request
URLS = ['http://httpbin.org', 'http://example.com/', 'https://api.github.com/']
def load_url(url):
with urllib.request.urlopen(url, timeout=60) as conn:
return conn.read()
# We can use a with statement to ensure threads are cleaned up promptly
with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
for url, data in zip(URLS, executor.map(load_url, URLS)):
print('%r page is %d bytes' % (url, len(data)))
从运行结果可以看出,map是按照URLS列表元素的顺序返回的,并且写出的代码更加简洁直观,我们可以根据具体的需求任选一种。
'http://httpbin.org' page is 12150 bytes
'http://example.com/' page is 1270 bytes
'https://api.github.com/' page is 2039 bytes
第三种选择wait
wait方法接会返回一个tuple(元组),tuple中包含两个set(集合),一个是completed(已完成的)另外一个是uncompleted(未完成的)。使用wait方法的一个优势就是获得更大的自由度,它接收三个参数FIRST_COMPLETED, FIRST_EXCEPTION 和ALL_COMPLETE,默认设置为ALL_COMPLETED。
我们通过下面这个例子来看一下三个参数的区别
from time import sleep
from random import randint
def return_after_random_secs(num):
sleep(randint(1, 5))
return "Return of {}".format(num)
pool = ThreadPoolExecutor(5)
futures = []
for x in range(5):
futures.append(pool.submit(return_after_random_secs, x))
print(wait(futures))
# print(wait(futures, timeout=None, return_when='FIRST_COMPLETED'))
如果采用默认的ALL_COMPLETED,程序会阻塞直到线程池里面的所有任务都完成。
DoneAndNotDoneFutures(done={
<Future at 0x7f0b06c9bc88 state=finished returned str>,
<Future at 0x7f0b06cbaa90 state=finished returned str>,
<Future at 0x7f0b06373898 state=finished returned str>,
<Future at 0x7f0b06352ba8 state=finished returned str>,
<Future at 0x7f0b06373b00 state=finished returned str>}, not_done=set())
如果采用FIRST_COMPLETED参数,程序并不会等到线程池里面所有的任务都完成。
DoneAndNotDoneFutures(done={
<Future at 0x7f84109edb00 state=finished returned str>,
<Future at 0x7f840e2e9320 state=finished returned str>,
<Future at 0x7f840f25ccc0 state=finished returned str>},
not_done={<Future at 0x7f840e2e9ba8 state=running>,
<Future at 0x7f840e2e9940 state=running>})