一、 前提:

有Google账号(具体怎么注册账号这里不详述,大家都懂的,自行百度)在你的Google邮箱中关联好colab(怎样在Google邮箱中使用colab在此不详述,自行百度)

二、 现在开始:

因为我们使用的是colab,所以就不必为安装版本对应的anaconda、python以及tensorflow尔苦恼了,经过以下配置就可以直接开始使用了。

基于VGG16和迁移学习的猫狗识别_2d

基于VGG16和迁移学习的猫狗识别_2d_02

基于VGG16和迁移学习的猫狗识别_2d_03

在colab中新建代码块,运行以下代码来下载需要的数据集


# In this exercise you will train a CNN on the FULL Cats-v-dogs dataset
# This will require you doing a lot of data preprocessing because
# the dataset isn't split into training and validation for you
# This code block has all the required inputs
import os
import zipfile
import random
import tensorflow as tf
from tensorflow.keras.optimizers import RMSprop
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from shutil import copyfile
# This code block downloads the full Cats-v-Dogs dataset and stores it as 
# cats-and-dogs.zip. It then unzips it to /tmp
# which will create a tmp/PetImages directory containing subdirectories
# called 'Cat' and 'Dog' (that's how the original researchers structured it)
# If the URL doesn't work, 
# .  visit https://www.microsoft.com/en-us/download/confirmation.aspx?id=54765
# And right click on the 'Download Manually' link to get a new URL
 
!wget --no-check-certificate 
 “https://github.com/ADlead/Dogs-Cats/archive/master.zip” 
 -O “/tmp/cats-and-dogs.zip”local_zip = ‘/tmp/cats-and-dogs.zip’
 zip_ref = zipfile.ZipFile(local_zip, ‘r’)
 zip_ref.extractall(’/tmp’)
 zip_ref.close()

运行结果:

在colab中默认安装TensorFlow1.14,所以会提示让升级tensorflow,可以不用理会,需要升级为2.0的也可以自行百度去升级。
接下来会提示我们需要的数据集以压缩包的形式已经下载好了

基于VGG16和迁移学习的猫狗识别_tensorflow_04

基于VGG16和迁移学习的猫狗识别_基于VGG16和迁移学习的猫狗识别_05

运行以下代码来解压下载好的数据集并把训练图像集划分成训练图像集和测试图像集,分别用于训练模型和测试模型。把25000张图像划分成20000张训练图像和5000张测试图像。深度学习的框架使用的是tensorflow,为了能让tensorflow分批输入数据进行训练,把所有的图像像素信息存储成batch文件。训练集100个batch文件,每个文件有200张图像。测试集1个batch文件,共5000张图像。


import cv2 as cv
import os
import numpy as np
 
import random
 import pickleimport time
start_time = time.time()
data_dir = ‘/tmp/Dogs-Cats-master/data’
 batch_save_path = ‘/tmp/Dogs-Cats-master/batch_files’

创建batch文件存储的文件夹

os.makedirs(batch_save_path, exist_ok=True)

图片统一大小:100 * 100

训练集 20000:100个batch文件,每个文件200张图片

验证集 5000: 一个测试文件,测试时 50张 x 100 批次

进入图片数据的目录,读取图片信息

all_data_files = os.listdir(os.path.join(data_dir, ‘train/’))

print(all_data_files)

打算数据的顺序

random.shuffle(all_data_files)
all_train_files = all_data_files[:20000]
 all_test_files = all_data_files[20000:]train_data = []
 train_label = []
 train_filenames = []test_data = []
 test_label = []
 test_filenames = []

训练集

for each in all_train_files:
 img = cv.imread(os.path.join(data_dir,‘train/’,each),1)
 resized_img = cv.resize(img, (100,100))img_data = np.array(resized_img)
 train_data.append(img_data)
 if ‘cat’ in each:
 train_label.append(0)
 elif ‘dog’ in each:
 train_label.append(1)
 else:
 raise Exception(’%s is wrong train file’%(each))
 train_filenames.append(each)

测试集

for each in all_test_files:
 img = cv.imread(os.path.join(data_dir,‘train/’,each), 1)
 resized_img = cv.resize(img, (100,100))img_data = np.array(resized_img)
 test_data.append(img_data)
 if ‘cat’ in each:
 test_label.append(0)
 elif ‘dog’ in each:
 test_label.append(1)
 else:
 raise Exception(’%s is wrong test file’%(each))
 test_filenames.append(each)print(len(train_data), len(test_data))

制作100个batch文件

start = 0
 end = 200
 for num in range(1, 101):
 batch_data = train_data[start: end]
 batch_label = train_label[start: end]
 batch_filenames = train_filenames[start: end]
 batch_name = ‘training batch {} of 15’.format(num)all_data = {
 ‘data’:batch_data,
 ‘label’:batch_label,
 ‘filenames’:batch_filenames,
 ‘name’:batch_name
 }with open(os.path.join(batch_save_path, ‘train_batch_{}’.format(num)), ‘wb’) as f:
 pickle.dump(all_data, f)start += 200
 end += 200

制作测试文件

all_test_data = {
 ‘data’:test_data,
 ‘label’:test_label,
 ‘filenames’:test_filenames,
 ‘name’:‘test batch 1 of 1’
 }with open(os.path.join(batch_save_path, ‘test_batch’), ‘wb’) as f:
 pickle.dump(all_test_data, f)end_time = time.time()
 print(‘制作结束, 用时{}秒’.format(end_time - start_time))

运行结果:

基于VGG16和迁移学习的猫狗识别_2d_06

基于VGG16和迁移学习的猫狗识别_基于VGG16和迁移学习的猫狗识别_07

运行以下编写卷积层、池化层、全连接层、搭建tensorflow的计算图、定义占位符、计算损失函数、预测值、准确率以及训练部分的代码


import tensorflow as tf
import numpy as np
import cv2 as cv
import os
import pickle
 
‘’’ 全局参数 ‘’’
 IMAGE_SIZE = 100
 LEARNING_RATE = 1e-4
 TRAIN_STEP = 10000
 TRAIN_SIZE = 100
 TEST_STEP = 100
 TEST_SIZE = 50IS_TRAIN = True
SAVE_PATH = ‘/tmp/Dogs-Cats-master/model/’
data_dir = ‘/tmp/Dogs-Cats-master/batch_files’
 pic_path = ‘/tmp/Dogs-Cats-master/data/test1’‘’’’’’
def load_data(filename):
 ‘’‘从batch文件中读取图片信息’’’
 with open(filename, ‘rb’) as f:
 data = pickle.load(f, encoding=‘iso-8859-1’)
 return data[‘data’],data[‘label’],data[‘filenames’]

读取数据的类

class InputData:
 def init(self, filenames, need_shuffle):
 all_data = []
 all_labels = []
 all_names = []
 for file in filenames:
 data, labels, filename = load_data(file)
all_data.append(data)
  all_labels.append(labels)
  all_names += filename

self._data = np.vstack(all_data)
self._labels = np.hstack(all_labels)
print(self._data.shape)
print(self._labels.shape)

self._filenames = all_names

self._num_examples = self._data.shape[0]
self._need_shuffle = need_shuffle
self._indicator = 0
if self._indicator:
  self._shuffle_data()
def _shuffle_data(self):
 # 把数据再混排
 p = np.random.permutation(self._num_examples)
 self._data = self._data[p]
 self._labels = self._labels[p]def next_batch(self, batch_size):
 ‘’‘返回每一批次的数据’’’
 end_indicator = self._indicator + batch_size
 if end_indicator > self._num_examples:
 if self._need_shuffle:
 self._shuffle_data()
 self._indicator = 0
 end_indicator = batch_size
 else:
 raise Exception(‘have no more examples’)
 if end_indicator > self._num_examples:
 raise Exception(‘batch size is larger than all examples’)
 batch_data = self._data[self._indicator : end_indicator]
 batch_labels = self._labels[self._indicator : end_indicator]
 batch_filenames = self._filenames[self._indicator : end_indicator]
 self._indicator = end_indicator
 return batch_data, batch_labels, batch_filenames

定义一个类

class MyTensor:
 def init(self):
# 载入训练集和测试集
train_filenames = [os.path.join(data_dir, 'train_batch_%d'%i) for i in range(1, 101)]
test_filenames = [os.path.join(data_dir, 'test_batch')]
self.batch_train_data = InputData(train_filenames, True)
self.batch_test_data = InputData(test_filenames, True)

pass
def flow(self):
 self.x = tf.placeholder(tf.float32, [None, IMAGE_SIZE, IMAGE_SIZE, 3], ‘input_data’)
 self.y = tf.placeholder(tf.int64, [None], ‘output_data’)
 self.keep_prob = tf.placeholder(tf.float32)
# self.x = self.x / 255.0 需不需要这一步?

# 图片输入网络中
fc = self.conv_net(self.x, self.keep_prob)

self.loss = tf.losses.sparse_softmax_cross_entropy(labels=self.y, logits=fc)
self.y_ = tf.nn.softmax(fc) # 计算每一类的概率
self.predict = tf.argmax(fc, 1)
self.acc = tf.reduce_mean(tf.cast(tf.equal(self.predict, self.y), tf.float32))

self.train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(self.loss)
self.saver = tf.train.Saver(max_to_keep=1)

print('计算流图已经搭建.')

训练

def myTrain(self):
acc_list = []
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())

for i in range(TRAIN_STEP):
    train_data, train_label, _ = self.batch_train_data.next_batch(TRAIN_SIZE)

    eval_ops = [self.loss, self.acc, self.train_op]
    eval_ops_results = sess.run(eval_ops, feed_dict={
      self.x:train_data,
      self.y:train_label,
      self.keep_prob:0.7
    })
    loss_val, train_acc = eval_ops_results[0:2]

    acc_list.append(train_acc)
    if (i+1) % 100 == 0:
      acc_mean = np.mean(acc_list)
      print('step:{0},loss:{1:.5},acc:{2:.5},acc_mean:{3:.5}'.format(
        i+1,loss_val,train_acc,acc_mean
      ))
    if (i+1) % 1000 == 0:
      test_acc_list = []
      for j in range(TEST_STEP):
        test_data, test_label, _ = self.batch_test_data.next_batch(TRAIN_SIZE)
        acc_val = sess.run([self.acc],feed_dict={
          self.x:test_data,
          self.y:test_label,
          self.keep_prob:1.0
        })
        test_acc_list.append(acc_val)
      print('[Test ] step:{0}, mean_acc:{1:.5}'.format(
        i+1, np.mean(test_acc_list)
      ))
  # 保存训练后的模型
  os.makedirs(SAVE_PATH, exist_ok=True)
  self.saver.save(sess, SAVE_PATH + 'my_model.ckpt')
def myTest(self):
 with tf.Session() as sess:
 model_file = tf.train.latest_checkpoint(SAVE_PATH)
 model = self.saver.restore(sess, save_path=model_file)
 test_acc_list = []
 predict_list = []
 for j in range(TEST_STEP):
 test_data, test_label, test_name = self.batch_test_data.next_batch(TEST_SIZE)
 for each_data, each_label, each_name in zip(test_data, test_label, test_name):
 acc_val, y__, pre, test_img_data = sess.run(
 [self.acc, self.y_, self.predict, self.x],
 feed_dict={
 self.x:each_data.reshape(1, IMAGE_SIZE, IMAGE_SIZE, 3),
 self.y:each_label.reshape(1),
 self.keep_prob:1.0
 }
 )
 predict_list.append(pre[0])
 test_acc_list.append(acc_val)
# 把测试结果显示出来
      self.compare_test(test_img_data, each_label, pre[0], y__[0], each_name)
  print('[Test ] mean_acc:{0:.5}'.format(np.mean(test_acc_list)))
def compare_test(self, input_image_arr, input_label, output, probability, img_name):
 classes = [‘cat’, ‘dog’]
 if input_label == output:
 result = ‘正确’
 else:
 result = ‘错误’
 print(‘测试【{0}】,输入的label:{1}, 预测得是{2}:{3}的概率:{4:.5}, 输入的图片名称:{5}’.format(
 result,input_label, output,classes[output], probability[output], img_name
 ))def conv_net(self, x, keep_prob):
 conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding=‘same’, activation=tf.nn.relu, name=‘conv1_1’)
 conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding=‘same’, activation=tf.nn.relu, name=‘conv1_2’)
 pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name=‘pool1’)
conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')
conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')
pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')

conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')
pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')

conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')
conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')
pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')

flatten = tf.layers.flatten(pool4) # 把网络展平,以输入到后面的全连接层

fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)
fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)
fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)
fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)
fc3 = tf.layers.dense(fc2, 2, None) # 得到输出fc3

return fc3
def main(self):
 self.flow()
 if IS_TRAIN is True:
 self.myTrain()
 else:
 self.myTest()def final_classify(self):
 all_test_files_dir = ‘./data/test1’
 all_test_filenames = os.listdir(all_test_files_dir)
 if IS_TRAIN is False:
 self.flow()
 # self.classify()
 with tf.Session() as sess:
 model_file = tf.train.latest_checkpoint(SAVE_PATH)
 mpdel = self.saver.restore(sess,save_path=model_file)
predict_list = []
    for each_filename in all_test_filenames:
      each_data = self.get_img_data(os.path.join(all_test_files_dir,each_filename))
      y__, pre, test_img_data = sess.run(
        [self.y_, self.predict, self.x],
        feed_dict={
          self.x:each_data.reshape(1, IMAGE_SIZE, IMAGE_SIZE, 3),
          self.keep_prob: 1.0
        }
      )
      predict_list.append(pre[0])
      self.classify(test_img_data, pre[0], y__[0], each_filename)

else:
  print('now is training model...')
def classify(self, input_image_arr, output, probability, img_name):
 classes = [‘cat’,‘dog’]
 single_image = input_image_arr[0] #* 255
 if output == 0:
 output_dir = ‘cat/’
 else:
 output_dir = ‘dog/’
 os.makedirs(os.path.join(’./classiedResult’, output_dir), exist_ok=True)
 cv.imwrite(os.path.join(’./classiedResult’,output_dir, img_name),single_image)
 print(‘输入的图片名称:{0},预测得有{1:5}的概率是{2}:{3}’.format(
 img_name,
 probability[output],
 output,
 classes[output]
 ))

根据名称获取图片像素

def get_img_data(self,img_name):
 img = cv.imread(img_name)
 resized_img = cv.resize(img, (100, 100))
 img_data = np.array(resized_img)return img_dataif name == ‘main’:
mytensor = MyTensor()
 mytensor.main() # 用于训练或测试

mytensor.final_classify() # 用于最后的分类

print(‘hello world’)

运行结果:

基于VGG16和迁移学习的猫狗识别_数据_08

参考:https://www.jianshu.com/p/9ee2533c8adb

代码出处:https://github.com/ADlead/Dogs-Cats.git

到此这篇关于使用tensorflow框架在Colab上跑通猫狗识别代码的文章就介绍到这了