在分布式系统中,有一些需要使用全局唯一 ID 的场景,这种时候为了防止 ID 冲突可以使用 36 位的 UUID,但是 UUID 有一些缺点,首先他相对比较长,另外 UUID 一般是无序的

有些时候我们希望能使用一种简单些的 ID,并且希望 ID 能够按照时间有序生成

什么是雪花算法
Snowflake 中文的意思是雪花,所以常被称为雪花算法,是 Twitter 开源的分布式 ID 生成算法

Twitter 雪花算法生成后是一个 64bit 的 long 型的数值,组成部分引入了时间戳,基本保持了自增

SnowFlake 算法的优点:

高性能高可用:生成时不依赖于数据库,完全在内存中生成
高吞吐:每秒钟能生成数百万的自增 ID
ID 自增:存入数据库中,索引效率高

SnowFlake 算法的缺点:

依赖与系统时间的一致性,如果系统时间被回调,或者改变,可能会造成 ID 冲突或者重复

雪花算法组成
snowflake 结构如下图所示:

实现雪花算法 java 雪花算法有什么缺点_Redis

 

包含四个组成部分

不使用:1bit,最高位是符号位,0 表示正,1 表示负,固定为 0

时间戳:41bit,毫秒级的时间戳(41 位的长度可以使用 69 年)

标识位:5bit 数据中心 ID,5bit 工作机器 ID,两个标识位组合起来最多可以支持部署 1024 个节点

序列号:12bit 递增序列号,表示节点毫秒内生成重复,通过序列号表示唯一,12bit 每毫秒可产生 4096 个 ID

通过序列号 1 毫秒可以产生 4096 个不重复 ID,则 1 秒可以生成 4096 * 1000 = 409w ID

默认的雪花算法是 64 bit,具体的长度可以自行配置。如果希望运行更久,增加时间戳的位数;如果需要支持更多节点部署,增加标识位长度;如果并发很高,增加序列号位数

总结:雪花算法并不是一成不变的,可以根据系统内具体场景进行定制

雪花算法适用场景
因为雪花算法有序自增,保障了 MySQL 中 B+ Tree 索引结构插入高性能

所以,日常业务使用中,雪花算法更多是被应用在数据库的主键 ID 和业务关联主键

雪花算法生成 ID 重复问题
具体情况如下:一个分布式服务,通过雪花算法生成 ID,共部署四个节点,标识位一致(都设置为了0)

每天凌晨上游系统跑批调用此服务,此时有 200 并发,均匀散布四个节点,四个节点同一毫秒同一序列号下生成 ID,那么就会产生重复 ID。导致数据库主键冲突。

通过上述假设场景,可以知道雪花算法生成 ID 冲突存在一定的前提条件

服务通过集群的方式部署,其中部分机器标识位一致
业务存在一定的并发量,没有并发量无法触发重复问题
生成 ID 的时机:同一毫秒下的序列号一致

标识位如何定义
如果能保证标识位不重复,那么雪花 ID 也不会重复

通过上面的案例,知道了 ID 重复的必要条件。如果要避免服务内产生重复的 ID,那么就需要从标识位上动文章

我们先看看开源框架中使用雪花算法,如何定义标识位

Mybatis-Plus v3.4.2 雪花算法实现类 Sequence,提供了两种构造方法:无参构造,自动生成 dataCenterId 和 workerId;有参构造,创建 Sequence 时明确指定标识位

Hutool v5.7.9 参照了 Mybatis-Plus dataCenterId 和 workerId 生成方案,提供了默认实现
一起看下 Sequence 的创建默认无参构造,如何生成 dataCenterId 和 workerId

public static long getDataCenterId(long maxDatacenterId) {
    long id = 1L;
    final byte[] mac = NetUtil.getLocalHardwareAddress();
    if (null != mac) {
        id = ((0x000000FF & (long) mac[mac.length - 2])
                | (0x0000FF00 & (((long) mac[mac.length - 1]) << 8))) >> 6;
        id = id % (maxDatacenterId + 1);
    }

    return id;
}

入参 maxDatacenterId 是一个固定值,代表数据中心 ID 最大值,默认值 31

为什么最大值要是 31?因为 5bit 的二进制最大是 11111,对应十进制数值 31

获取 dataCenterId 时存在两种情况,一种是网络接口为空,默认取 1L;另一种不为空,通过 Mac 地址获取 dataCenterId

可以得知,dataCenterId 的取值与 Mac 地址有关

接下来再看看 workerId

public static long getWorkerId(long datacenterId, long maxWorkerId) {
    final StringBuilder mpid = new StringBuilder();
    mpid.append(datacenterId);
    try {
        mpid.append(RuntimeUtil.getPid());
    } catch (UtilException igonre) {
        //ignore
    }
    return (mpid.toString().hashCode() & 0xffff) % (maxWorkerId + 1);
}

入参 maxWorkderId 也是一个固定值,代表工作机器 ID 最大值,默认值 31;datacenterId 取自上述的 getDatacenterId 方法

name 变量值为 PID@IP,所以 name 需要根据 @ 分割并获取下标 0,得到 PID

通过 MAC + PID 的 hashcode 获取16个低位,进行运算,最终得到 workerId
分配标识位
Mybatis-Plus 标识位的获取依赖 Mac 地址和进程 PID,虽然能做到尽量不重复,但仍有小几率

标识位如何定义才能不重复?有两种方案:预分配和动态分配

预分配

应用上线前,统计当前服务的节点数,人工去申请标识位

这种方案,没有代码开发量,在服务节点固定或者项目少可以使用,但是解决不了服务节点动态扩容性问题

动态分配

通过将标识位存放在 Redis、Zookeeper、MySQL 等中间件,在服务启动的时候去请求标识位,请求后标识位更新为下一个可用的

通过存放标识位,延伸出一个问题:雪花算法的 ID 是 服务内唯一还是全局唯一

以 Redis 举例,如果要做服务内唯一,存放标识位的 Redis 节点使用自己项目内的就可以;如果是全局唯一,所有使用雪花算法的应用,要用同一个 Redis 节点

两者的区别仅是 不同的服务间是否公用 Redis。如果没有全局唯一的需求,最好使 ID 服务内唯一,因为这样可以避免单点问题

服务的节点数超过 1024,则需要做额外的扩展;可以扩展 10 bit 标识位,或者选择开源分布式 ID 框架

动态分配实现方案

Redis 存储一个 Hash 结构 Key,包含两个键值对:dataCenterId 和 workerId

在应用启动时,通过 Lua 脚本去 Redis 获取标识位。dataCenterId 和 workerId 的获取与自增在 Lua 脚本中完成,调用返回后就是可用的标示位。(Redis+lua 方案,会使获取与自增在同一个事物中完成。)

具体 Lua 脚本逻辑如下:

第一个服务节点在获取时,Redis 可能是没有 snowflake_work_id_key 这个 Hash 的,应该先判断 Hash 是否存在,不存在初始化 Hash,dataCenterId、workerId 初始化为 0
如果 Hash 已存在,判断 dataCenterId、workerId 是否等于最大值 31,满足条件初始化 dataCenterId、workerId 设置为 0 返回
dataCenterId 和 workerId 的排列组合一共是 1024,在进行分配时,先分配 workerId
判断 workerId 是否 != 31,条件成立对 workerId 自增,并返回;如果 workerId = 31,自增 dataCenterId 并将 workerId 设置为 0
dataCenterId、workerId 是一直向下推进的,总体形成一个环状。通过 Lua 脚本的原子性,保证 1024 节点下的雪花算法生成不重复。如果标识位等于 1024,则从头开始继续循环推进

开源分布式 ID 框架
Leaf 和 Uid 都有实现雪花算法,Leaf 额外提供了号段模式生成 ID

美团 Leaf:https://github.com/Meituan-Dianping/Leaf

百度 Uid:https://github.com/baidu/uid-generator

雪花算法可以满足大部分场景,如无必要,不建议引入开源方案增加系统复杂度

解决雪花算法时钟回拨问题

首先, SnowFlake的末尾12位是序列号, 用来记录同一毫秒内产生的不同id, 同一毫秒总共可以产生4096个id, 每一毫秒的序列号都是从0这个基础序列号开始递增

假设我们的业务系统在单机上的QPS为3w/s, 那么其实平均每毫秒只需要产生30个id即可, 远没有达到设计的4096, 也就是说通常情况下序列号的使用都是处在一个低水位, 当发生时钟回拨的时候, 这些尚未被使用的序号就可以派上用场了.

因此, 可以对给定的基础序列号稍加修改, 后面每发生一次时钟回拨就将基础序列号加上指定的步长, 例如开始时是从0递增, 发生一次时钟回拨后从1024开始递增, 再发生一次时钟回拨则从2048递增, 这样还能够满足3次的时钟回拨到同一时间点(发生这种操作就有点扯了).
 

/** 步长, 1024 */
    private static long stepSize = 2 << 9;
    /** 基础序列号, 每发生一次时钟回拨, basicSequence += stepSize */
    private long basicSequence = 0L;

    private long handleMovedBackwards(long currStmp) {
        basicSequence += stepSize;
        if (basicSequence == MAX_SEQUENCE + 1) {
            basicSequence = 0;
            currStmp = getNextMill();
        }
        sequence = basicSequence;

        lastStmp = currStmp;

        return (currStmp - START_STMP) << TIMESTMP_LEFT
                | workId << WORK_LEFT 
                | sequence; 
    }

完整代码如下:

public class SnowFlakeWorker {

    private volatile static SnowFlakeWorker snowFlakeWorkerInstance;

    // 1位标识部分    -      41位时间戳部分        -         10位节点部分     12位序列号部分
    /** 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000 */
    /**
     * 起始的时间戳
     */
    private final static long START_STMP = 1288834974657L;

    /**
     * 每一部分占用的位数
     */
    private final static long SEQUENCE_BIT = 12;  // 序列号占用的位数
    private final static long WORK_BIT = 10;    // 机器标识占用的位数

    /**
     * WORK_NUM最大值 1023
     */
    private final static long MAX_WORK_NUM = -1L ^ (-1L << WORK_BIT);
    /**
     * SEQUENCE最大值 4095
     */
    private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);

    /**
     * 每一部分向左的位移
     */
    private final static long WORK_LEFT = SEQUENCE_BIT;
    private final static long TIMESTMP_LEFT = WORK_LEFT + WORK_BIT;

    private long workId;
    private long sequence = 0L;  //序列号
    private long lastStmp = -1L; //上一次时间戳

    /** 步长, 1024 */
    private static long stepSize = 2 << 9;
    /** 基础序列号, 每发生一次时钟回拨即改变, basicSequence += stepSize */
    private long basicSequence = 0L;

    private SnowFlakeWorker(long workId) {
        if (workId > MAX_WORK_NUM || workId < 0) {
            throw new IllegalArgumentException("datacenterId can't be greater than MAX_DATACENTER_NUM or less than 0");
        }
        this.workId = workId;
    }


    protected synchronized static SnowFlakeWorker initSnowFlakeWorker(long workId) {
        snowFlakeWorkerInstance = new SnowFlakeWorker(workId);
        return snowFlakeWorkerInstance;
    }

    public static SnowFlakeWorker getInstance() {
        return snowFlakeWorkerInstance;
    }


    /**
     * 产生下一个ID
     */
    public synchronized long nextId() {
        long currStmp = getNewstmp();
        if (currStmp < lastStmp) {
            return handleClockBackwards(currStmp);
        }

        if (currStmp == lastStmp) {
            // 相同毫秒内,序列号自增
            sequence = (sequence + 1) & MAX_SEQUENCE;
            // 同一毫秒的序列数已经达到最大
            if (sequence == 0L) {
                currStmp = getNextMill();
            }
        } else {
            // 不同毫秒内,序列号置为 basicSequence
            sequence = basicSequence;
        }

        lastStmp = currStmp;

        return (currStmp - START_STMP) << TIMESTMP_LEFT  // 时间戳部分
                | workId << WORK_LEFT                    // 节点部分
                | sequence;                              // 序列号部分
    }

    /**
     * 处理时钟回拨
     */
    private long handleClockBackwards(long currStmp) {
        basicSequence += stepSize;
        if (basicSequence == MAX_SEQUENCE + 1) {
            basicSequence = 0;
            currStmp = getNextMill();
        }
        sequence = basicSequence;

        lastStmp = currStmp;

        return (currStmp - START_STMP) << TIMESTMP_LEFT  // 时间戳部分
                | workId << WORK_LEFT                    // 节点部分
                | sequence;                              // 序列号部分
    }

    private long getNextMill() {
        long mill = getNewstmp();
        while (mill <= lastStmp) {
            mill = getNewstmp();
        }
        return mill;
    }

    private long getNewstmp() {
        return System.currentTimeMillis();
    }


}

回顾总结
文章通过图文并茂的方式帮助读者梳理了一遍什么是雪花算法,以及如何解决雪花算法生成 ID 冲突的问题

关于雪环算法生成 ID 冲突问题,文中给了一种方案:分配标示位;通过分配雪花算法的组成标识位,来达到默认 1024 节点下 ID 生成唯一

可以去看 Hutool 或者 Mybatis-Plus 雪花算法的具体实现,帮助大家更好的理解

雪花算法不是万能的,并不能适用于所有场景。如果 ID 要求全局唯一并且服务节点超出 1024 节点,可以选择修改算法本身的组成,即扩展标识位,或者选择开源方案:LEAF、UID