在机器学习中有很多调优的方式机器学习——超参数调优,深度学习中也存在同样的方式,接下来,介绍一下深度学习框架里边的自动调参模块。

1. 基于Tensorflow的Keras tuner

官方教程如下:Introduction to the Keras Tuner  |  TensorFlow Core (google.cn)

官网API极其更多细节:HyperParameters - Keras Tuner (keras-team.github.io)

超参数分为两种类型:

  • 模型超参数(例如隐藏层的权重和数量)
  • 算法超参数(例如SGD的学习率,KNN的K值等)

(1)定义模型

当建立模型进行超参数优化时,我们需要根据模型建立超参数搜索空间,建立hypermodel通常是两个途径:

  • 使用模型建立函数(model builder function)
  • 使用Keras Tuner API中HyperModel的子类HyperXception and HyperResNet

Keras Tuner API使用hp进行参数遍历,常用方法有

  • hp.Int 
hp_units = hp.Int('units', min_value=32, max_value=512, step=32)

            name: Str. 参数的名字,必须唯一
            min_value: Int. 范围的最小值
            max_value: Int. 范围的最大值
            step: 步长

  • hp.Choice 
hp_learning_rate = hp.Choice('learning_rate', values=[1e-2, 1e-3, 1e-4])

            name: Str. 参数的名字,必须唯一
            values: 可能值的list. 值的类型可以是int, float,str, or bool. 所有的值必须是一个类型
            ordered: Whether the values passed should be considered to
                have an ordering. This defaults to `True` for float/int
                values. Must be `False` for any other values.

  • hp.Float
hp_units = hp.Float('units', min_value=32.0, max_value=512.0, step=32.0)

            name: Str. 参数的名字,必须唯一
            min_value: Float. 范围的最小值
            max_value: Float. 范围的最大值
            step: Optional. Float, e.g. 0.1.
                smallest meaningful distance between two values.
                Whether step should be specified is Oracle dependent,
                since some Oracles can infer an optimal step automatically.

  • hp.Boolean

            name: Str. 参数的名字,必须唯一
            default: Default value to return for the parameter.
                If unspecified, the default value will be False.

  • hp.Fixed

            name: Str. 参数的名字,必须唯一
            value: Value to use (can be any JSON-serializable
                Python type).

建立builder function,主要对units和learning_rate两个参数进行了调优,代码如下:

def model_builder(hp):
  model = keras.Sequential()
  model.add(keras.layers.Flatten(input_shape=(28, 28)))

  # Tune the number of units in the first Dense layer
  # Choose an optimal value between 32-512
  hp_units = hp.Int('units', min_value=32, max_value=512, step=32)
  model.add(keras.layers.Dense(units=hp_units, activation='relu'))
  model.add(keras.layers.Dense(10))

  # Tune the learning rate for the optimizer
  # Choose an optimal value from 0.01, 0.001, or 0.0001
  hp_learning_rate = hp.Choice('learning_rate', values=[1e-2, 1e-3, 1e-4])

  model.compile(optimizer=keras.optimizers.Adam(learning_rate=hp_learning_rate),
                loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
                metrics=['accuracy'])

  return model

(2)实例化调优器并进行调优

The Keras Tuner有四个调优器,分别是RandomSearchHyperbandBayesianOptimization, and Sklearn,这里主要是用了Hyperband,需要指定objective和max_epochs等参数,并在directory='my_dir'/project_name='intro_to_kt'的文件中记录训练细节。代码如下:

tuner = kt.Hyperband(model_builder,
                     objective='val_accuracy',
                     max_epochs=10,
                     factor=3,
                     directory='my_dir',
                     project_name='intro_to_kt')

#早停
stop_early = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=5)

tuner.search(img_train, label_train, epochs=50, validation_split=0.2, callbacks=[stop_early])

# Get the optimal hyperparameters
best_hps=tuner.get_best_hyperparameters(num_trials=1)[0]

print(f"""
The hyperparameter search is complete. The optimal number of units in the first densely-connected
layer is {best_hps.get('units')} and the optimal learning rate for the optimizer
is {best_hps.get('learning_rate')}.
""")

(3)模型调优之后,可以通过最优参数进行重新training。

#利用搜索得到的超参数,找出最优epoch数来训练模型。
# Build the model with the optimal hyperparameters and train it on the data for 50 epochs
model = tuner.hypermodel.build(best_hps)
history = model.fit(img_train, label_train, epochs=50, validation_split=0.2)

val_acc_per_epoch = history.history['val_accuracy']
best_epoch = val_acc_per_epoch.index(max(val_acc_per_epoch)) + 1
print('Best epoch: %d' % (best_epoch,))

#重新实例化超模型,从上面用最优的纪元数训练它。
hypermodel = tuner.hypermodel.build(best_hps)

# Retrain the model
hypermodel.fit(img_train, label_train, epochs=best_epoch, validation_split=0.2)

拓展:其他优化器的用法

import kerastuner as kt
    from sklearn import ensemble
    from sklearn import datasets
    from sklearn import linear_model
    from sklearn import metrics
    from sklearn import model_selection

    def build_model(hp):
      model_type = hp.Choice('model_type', ['random_forest', 'ridge'])
      if model_type == 'random_forest':
        model = ensemble.RandomForestClassifier(
            n_estimators=hp.Int('n_estimators', 10, 50, step=10),
            max_depth=hp.Int('max_depth', 3, 10))
      else:
        model = linear_model.RidgeClassifier(
            alpha=hp.Float('alpha', 1e-3, 1, sampling='log'))
      return model

    tuner = kt.tuners.Sklearn(
        oracle=kt.oracles.BayesianOptimization(
            objective=kt.Objective('score', 'max'),
            max_trials=10),
        hypermodel=build_model,
        scoring=metrics.make_scorer(metrics.accuracy_score),
        cv=model_selection.StratifiedKFold(5),
        directory='.',
        project_name='my_project')

    X, y = datasets.load_iris(return_X_y=True)
    X_train, X_test, y_train, y_test = model_selection.train_test_split(
        X, y, test_size=0.2)

    tuner.search(X_train, y_train)

    best_model = tuner.get_best_models(num_models=1)[0]

其他两个:

tuner = kt.tuners.BayesianOptimization(
        hypermodel=model_builder,
        objective='val_accuracy',
        max_trials=4,
        directory='.',
        project_name='my_project')    
    
tuner = kt.tuners.RandomSearch(
        hypermodel=model_builder,
        objective='val_accuracy',
        max_trials=4,
        directory='.',
        project_name='my_project')

2.RAY tune

RAY现在仅支持Mac和Linux,Windows的wheels还没有。

(1)安装:

pip install 'ray[tune]'

(2)优势:

  • 支持多平台包括PyTorch, XGBoost, MXNet和Keras
  • 自动管理检查点和记录到TensorBoard

(3)关键点

Ray tune的使用核心点主要如下图构成:

深度学习超参数自动调优 超参数调优有哪些方法_深度学习超参数自动调优

  • Trainable:包装目标函数
#损失函数
def objective(x, a, b):
    return a * (x ** 0.5) + b
#wrapper
def trainable(config):
    # config (dict): A dict of hyperparameters.

    for x in range(20):
        score = objective(x, config["a"], config["b"])

        tune.report(score=score)  # This sends the score to Tune.
  • tune.run:执行参数优化
# Pass in a Trainable class or function to tune.run.
tune.run(trainable)
  • search space:建立搜索空间
config = {
    "uniform": tune.uniform(-5, -1),  # Uniform float between -5 and -1
    "quniform": tune.quniform(3.2, 5.4, 0.2),  # Round to increments of 0.2
    "loguniform": tune.loguniform(1e-4, 1e-2),  # Uniform float in log space
    "qloguniform": tune.qloguniform(1e-4, 1e-1, 5e-4),  # Round to increments of 0.0005
    "randn": tune.randn(10, 2),  # Normal distribution with mean 10 and sd 2
    "qrandn": tune.qrandn(10, 2, 0.2),  # Round to increments of 0.2
    "randint": tune.randint(-9, 15),  # Random integer between -9 and 15
    "qrandint": tune.qrandint(-21, 12, 3),  # Round to increments of 3 (includes 12)
    "choice": tune.choice(["a", "b", "c"]),  # Choose one of these options uniformly
    "func": tune.sample_from(lambda spec: spec.config.uniform * 0.01), # Depends on other value
    "grid": tune.grid_search([32, 64, 128])  # Search over all these values
}
# Be sure to first run `pip install hyperopt`

import hyperopt as hp
from ray.tune.suggest.hyperopt import HyperOptSearch

# Create a HyperOpt search space
config = {
    "a": tune.uniform(0, 1),
    "b": tune.uniform(0, 20)

    # Note: Arbitrary HyperOpt search spaces should be supported!
    # "foo": tune.randn(0, 1))
}

# Specify the search space and maximize score
hyperopt = HyperOptSearch(metric="score", mode="max")

# Execute 20 trials using HyperOpt and stop after 20 iterations
tune.run(
    trainable,
    config=config,
    search_alg=hyperopt,
    num_samples=20,
    stop={"training_iteration": 20}
)
  • Trial Schedulers:查看训练过程
  • Analysis:分析训练过程

(4)使用

from ray import tune


def objective(step, alpha, beta):
    return (0.1 + alpha * step / 100)**(-1) + beta * 0.1


def training_function(config):
    # Hyperparameters
    alpha, beta = config["alpha"], config["beta"]
    for step in range(10):
        # Iterative training function - can be any arbitrary training procedure.
        intermediate_score = objective(step, alpha, beta)
        # Feed the score back back to Tune.
        tune.report(mean_loss=intermediate_score)


analysis = tune.run(
    training_function,
    config={
        "alpha": tune.grid_search([0.001, 0.01, 0.1]),
        "beta": tune.choice([1, 2, 3])
    })

print("Best config: ", analysis.get_best_config(
    metric="mean_loss", mode="min"))

# Get a dataframe for analyzing trial results.
df = analysis.results_df