这里需要前面两章的基础,如果没有环境或者看不懂在说什么,就翻一翻前两章。

kafka顺序消费(单线程)

顺序消费

顺序消费:是指消息的产生顺序和消费顺序相同。不管你用的是什么q或者kafka还是sofa,顺序依赖都是一样的意思。

举个例子:订单A的消息为A1,A2,A3,发送顺序也如此,订单B的消息为B1,B2,B3,A订单消息先发送,B订单消息后发送。

  • A1,A2,A3,B1,B2,B3是全局顺序消息,严重降低了系统的并发度。完全的FIFO,导致无法使用多线程,速度极慢。
  • A1,B1,A2,A3,B2,B3是局部顺序消息,可以被接受。假设A1,A2,A3是创造,支付,完成订单。不论两者如何穿插,只要A1,A2,A3的顺序没有变,即可。
  • A2,B1,A1,B2,A3,B3不可接受,因为A2出现在了A1的前面。

要保证顺序消费,无非就是发送到topic的过程,发到同一个Partitioning(同一个分区视为一个队列,顺序一定是正确的)。消费的时候,按顺序获取即可,单线程直接取,没什么说的。多线程则需要

整体结构

java kafka 多线程消费 kafka单线程消费_json

  • yml文件:
spring:
  application:
    name: kafka-sort-consume
  kafka:
    bootstrap-servers: 192.168.56.101:9092,192.168.56.101:9093
    consumer:
      group-id: sort-consume
server:
  port: 8088
kafka:
  server: 192.168.56.101:9092
  order:
    topic: sort-consume
    concurrent: 3
  • log配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<configuration>
    <!-- 文件输出格式 -->
    <property name="PATTERN" value="- %d{yyyy-MM-dd HH:mm:ss.SSS}, %5p, [%thread], %logger{39} - %m%n" />

    <appender name="CONSOLE" class="ch.qos.logback.core.ConsoleAppender">
        <encoder charset="UTF-8">
            <pattern>${PATTERN}</pattern>
        </encoder>
    </appender>

    <root level="info">
        <appender-ref ref="CONSOLE" />
    </root>

</configuration>
  • 生产者
@RestController
@RequestMapping
@Slf4j
public class OrderController {
    @Autowired
    KafkaTemplate kafkaTemplate;
    @GetMapping
    public void send(){
        for (long i = 0; i <100 ; i++) {
            CreateOrderDTO createOrderDTO =new CreateOrderDTO();
            PayOrderDTO payOrderDTO = new PayOrderDTO();
            FinishOrderDTO finishOrderDTO = new FinishOrderDTO();
            createOrderDTO.setOrderName("创建订单号:"+i);payOrderDTO.setOrderName("支付订单号:"+i);finishOrderDTO.setOrderName("完成订单号:"+i);
            createOrderDTO.setId(i);payOrderDTO.setId(i);finishOrderDTO.setId(i);
            kafkaTemplate.send("sort-consume",GsonUtil.gsonToString(createOrderDTO));
            kafkaTemplate.send("sort-consume",GsonUtil.gsonToString(payOrderDTO));
            kafkaTemplate.send("sort-consume",GsonUtil.gsonToString(finishOrderDTO));

        }
    }
}
  • 消费者
@Component
public class KafkaConsumer {
    @KafkaListener(topics = {"sort-consume"})
    public void onMessage1(ConsumerRecord<?, ?> record){
        System.out.println(record);
    }
}
  • DTO:这里三个类放一起了,要用的话,回头自行拆分下。
@Data
@AllArgsConstructor
@NoArgsConstructor
public class CreateOrderDTO {
    private Long id;
    private Long status;
    private String orderName;

}

@Data
@AllArgsConstructor
@NoArgsConstructor
public class PayOrderDTO {
    private Long id;
    private Long status;
    private String orderName;
}

@Data
@AllArgsConstructor
@NoArgsConstructor
public class FinishOrderDTO {
    private Long id;
    private Long status;
    private String orderName;
}
  • Gson工具包
public class GsonUtil {

    private static Gson gson = null;

    static {
        if (Objects.isNull(gson)) {
            gson = new GsonBuilder()
                    .registerTypeAdapter(LocalDateTime.class, (JsonDeserializer<LocalDateTime>) (json, type, jsonDeserializationContext) -> {
                        String datetime = json.getAsJsonPrimitive().getAsString();
                        return LocalDateTime.parse(datetime, DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss"));
                    })
                    .registerTypeAdapter(LocalDate.class, (JsonDeserializer<LocalDate>) (json, type, jsonDeserializationContext) -> {
                        String datetime = json.getAsJsonPrimitive().getAsString();
                        return LocalDate.parse(datetime, DateTimeFormatter.ofPattern("yyyy-MM-dd"));
                    })
                    .registerTypeAdapter(Date.class, (JsonDeserializer<Date>) (json, type, jsonDeserializationContext) -> {
                        String datetime = json.getAsJsonPrimitive().getAsString();
                        LocalDateTime localDateTime = LocalDateTime.parse(datetime, DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss"));
                        return Date.from(localDateTime.atZone(ZoneId.systemDefault()).toInstant());
                    })
                    .registerTypeAdapter(LocalDateTime.class, (JsonSerializer<LocalDateTime>) (src, typeOfSrc, context) -> new JsonPrimitive(src.format(DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss"))))
                    .registerTypeAdapter(LocalDate.class, (JsonSerializer<LocalDate>) (src, typeOfSrc, context) -> new JsonPrimitive(src.format(DateTimeFormatter.ofPattern("yyyy-MM-dd"))))
                    .registerTypeAdapter(Date.class, (JsonSerializer<Date>) (src, typeOfSrc, context) -> {
                        LocalDateTime localDateTime = LocalDateTime.ofInstant(src.toInstant(), ZoneId.systemDefault());
                        return new JsonPrimitive(localDateTime.format(DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss")));
                    })
                    .create();
        }
    }

    public GsonUtil() {
    }

    /**
     * 将object对象转成json字符串
     *
     * @param object
     * @return
     */
    public static String gsonToString(Object object) {
        String gsonString = null;
        if (gson != null) {
            gsonString = gson.toJson(object);
        }
        return gsonString;
    }

    /**
     * 将gsonString转成泛型bean
     *
     * @param gsonString
     * @param cls
     * @return
     */
    public static <T> T gsonToBean(String gsonString, Class<T> cls) {
        T t = null;
        if (gson != null) {
            t = gson.fromJson(gsonString, cls);
        }
        return t;
    }

    /**
     * 转成list
     * 泛型在编译期类型被擦除导致报错
     * @param gsonString
     * @param cls
     * @return
     */
    public static <T> List<T> gsonToList(String gsonString, Class<T> cls) {
        List<T> list = null;
        if (gson != null) {
            list = gson.fromJson(gsonString, TypeToken.getParameterized(List.class,cls).getType());
        }
        return list;
    }

    /**
     * 转成list中有map的
     *
     * @param gsonString
     * @return
     */
    public static <T> List<Map<String, T>> gsonToListMaps(String gsonString) {
        List<Map<String, T>> list = null;
        if (gson != null) {
            list = gson.fromJson(gsonString,
                    new TypeToken<List<Map<String, T>>>() {
                    }.getType());
        }
        return list;
    }


    /**
     * 转成map的
     *
     * @param gsonString
     * @return
     */
    public static <T> Map<String, T> gsonToMaps(String gsonString) {
        Map<String, T> map = null;
        if (gson != null) {
            map = gson.fromJson(gsonString, new TypeToken<Map<String, T>>() {
            }.getType());
        }
        return map;
    }

    /**
     * 把一个bean(或者其他的字符串什么的)转成json
     * @param object
     * @return
     */
    public static String beanToJson(Object object){
        return gson.toJson(object);
    }
}
  • 启动类
@SpringBootApplication
public class KafkaSortConsumeDemoApplication {

    public static void main(String[] args) {
        SpringApplication.run(KafkaSortConsumeDemoApplication.class, args);
    }
}
  • 加下来,启动项目,然后访问http://localhost:8089/,访问结果如下:
ConsumerRecord(topic = sort-consume, partition = 2, leaderEpoch = 4, offset = 1404, CreateTime = 1677746104033, serialized key size = -1, serialized value size = 42, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = {"id":8,"orderName":"支付订单号:8"})
ConsumerRecord(topic = sort-consume, partition = 2, leaderEpoch = 4, offset = 1405, CreateTime = 1677746104033, serialized key size = -1, serialized value size = 42, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = {"id":8,"orderName":"完成订单号:8"})
ConsumerRecord(topic = sort-consume, partition = 2, leaderEpoch = 4, offset = 1406, CreateTime = 1677746104033, serialized key size = -1, serialized value size = 44, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = {"id":10,"orderName":"支付订单号:10"})
ConsumerRecord(topic = sort-consume, partition = 2, leaderEpoch = 4, offset = 1407, CreateTime = 1677746104033, serialized key size = -1, serialized value size = 44, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = {"id":10,"orderName":"完成订单号:10"})
ConsumerRecord(topic = sort-consume, partition = 2, leaderEpoch = 4, offset = 1408, CreateTime = 1677746104033, serialized key size = -1, serialized value size = 44, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = {"id":11,"orderName":"创建订单号:11"})
ConsumerRecord(topic = sort-consume, partition = 2, leaderEpoch = 4, offset = 1409, CreateTime = 1677746104033, serialized key size = -1, serialized value size = 44, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = {"id":11,"orderName":"支付订单号:11"})
ConsumerRecord(topic = sort-consume, partition = 0, leaderEpoch = 4, offset = 1182, CreateTime = 1677746104038, serialized key size = -1, serialized value size = 44, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = {"id":35,"orderName":"支付订单号:35"})
ConsumerRecord(topic = sort-consume, partition = 0, leaderEpoch = 4, offset = 1181, CreateTime = 1677746104033, serialized key size = -1, serialized value size = 44, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = {"id":10,"orderName":"创建订单号:10"})
ConsumerRecord(topic = sort-consume, partition = 0, leaderEpoch = 4, offset = 1183, CreateTime = 1677746104039, serialized key size = -1, serialized value size = 44, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = {"id":35,"orderName":"完成订单号:35"})
ConsumerRecord(topic = sort-consume, partition = 0, leaderEpoch = 4, offset = 1184, CreateTime = 1677746104039, serialized key size = -1, serialized value size = 44, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = {"id":36,"orderName":"创建订单号:36"})
  • 结果分析:先看10号,他先支付了订单,然后完成订单,最后支付订单,明显不符合我们所说的部分顺序。
  • 原因:因为kafka默认随机分配分区,不同分区下的消费顺序并不能得到保障,所以我们需要为发送的消息指定好分区。
@RestController
@RequestMapping
@Slf4j
public class OrderController {
    @Autowired
    KafkaTemplate kafkaTemplate;
    @GetMapping
    public void send(){
        for (long i = 0; i <100 ; i++) {
            CreateOrderDTO createOrderDTO =new CreateOrderDTO();
            PayOrderDTO payOrderDTO = new PayOrderDTO();
            FinishOrderDTO finishOrderDTO = new FinishOrderDTO();
            createOrderDTO.setOrderName("创建订单号:"+i);payOrderDTO.setOrderName("支付订单号:"+i);finishOrderDTO.setOrderName("完成订单号:"+i);
            createOrderDTO.setId(i);payOrderDTO.setId(i);finishOrderDTO.setId(i);
            kafkaTemplate.send("sort-consume",new Integer((int) i%3),null ,GsonUtil.gsonToString(createOrderDTO));
            kafkaTemplate.send("sort-consume",new Integer((int) i%3),null,GsonUtil.gsonToString(payOrderDTO));
            kafkaTemplate.send("sort-consume",new Integer((int) i%3),null,GsonUtil.gsonToString(finishOrderDTO));

        }
    }
}
  • 再次执行,查看结果:发现结果都正确
ConsumerRecord(topic = sort-consume, partition = 1, leaderEpoch = 4, offset = 1344, CreateTime = 1677746610654, serialized key size = -1, serialized value size = 42, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = {"id":1,"orderName":"创建订单号:1"})
ConsumerRecord(topic = sort-consume, partition = 1, leaderEpoch = 4, offset = 1345, CreateTime = 1677746610654, serialized key size = -1, serialized value size = 42, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = {"id":1,"orderName":"支付订单号:1"})
ConsumerRecord(topic = sort-consume, partition = 1, leaderEpoch = 4, offset = 1346, CreateTime = 1677746610654, serialized key size = -1, serialized value size = 42, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = {"id":1,"orderName":"完成订单号:1"})
ConsumerRecord(topic = sort-consume, partition = 1, leaderEpoch = 4, offset = 1347, CreateTime = 1677746610656, serialized key size = -1, serialized value size = 42, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = {"id":4,"orderName":"创建订单号:4"})
ConsumerRecord(topic = sort-consume, partition = 1, leaderEpoch = 4, offset = 1348, CreateTime = 1677746610656, serialized key size = -1, serialized value size = 42, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = {"id":4,"orderName":"支付订单号:4"})
ConsumerRecord(topic = sort-consume, partition = 1, leaderEpoch = 4, offset = 1349, CreateTime = 1677746610656, serialized key size = -1, serialized value size = 42, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = {"id":4,"orderName":"完成订单号:4"})
ConsumerRecord(topic = sort-consume, partition = 1, leaderEpoch = 4, offset = 1350, CreateTime = 1677746610657, serialized key size = -1, serialized value size = 42, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = {"id":7,"orderName":"创建订单号:7"})
ConsumerRecord(topic = sort-consume, partition = 1, leaderEpoch = 4, offset = 1351, CreateTime = 1677746610657, serialized key size = -1, serialized value size = 42, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = {"id":7,"orderName":"支付订单号:7"})
ConsumerRecord(topic = sort-consume, partition = 1, leaderEpoch = 4, offset = 1352, CreateTime = 1677746610657, serialized key size = -1, serialized value size = 42, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = {"id":7,"orderName":"完成订单号:7"})
  • 至此,单线程保证顺序消费的方法,就掌握了。单线程可以放在不同的分区(分区就是队列),然后先后拿取即可。但,消费者有可能是并发的。同一个分区,A线程拿了支付订单,B拿了完成订单。但B线程执行的比较快,这就会出现先完成了订单然后才支付订单。这就很尴尬了,怎么解决呢?下篇章再来一起探讨。