文章目录
- 1.数据聚合
- 1.1.聚合的种类
- 1.2.DSL实现聚合
- 1.2.1.Bucket聚合语法
- 1.2.2.聚合结果排序
- 1.2.3.限定聚合范围
- 1.2.4.Metric聚合语法
- 1.2.5.小结
- 1.3.RestAPI实现聚合
- 2.数据同步
- 2.1.思路分析
- 2.1.1.同步调用
- 2.1.2.异步通知
- 2.1.3.监听binlog
- 2.1.4.选择
- 3.集群
- 3.1.集群脑裂问题
- 3.1.1.集群职责划分
- 3.1.2.脑裂问题
- 3.1.3.小结
- 3.2.集群分布式存储
- 3.2.1.分片存储原理
- 3.3.集群分布式查询
- 3.4.集群故障转移
1.数据聚合
聚合(aggregations)可以让我们极其方便的实现对数据的统计、分析、运算。例如:
- 什么品牌的手机最受欢迎?
- 这些手机的平均价格、最高价格、最低价格?
- 这些手机每月的销售情况如何?
实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果。
1.1.聚合的种类
聚合常见的有三类:
- 桶(Bucket)聚合:用来对文档做分组
- TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组
- Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组
- 度量(Metric)聚合:用以计算一些值,比如:最大值、最小值、平均值等
- Avg:求平均值
- Max:求最大值
- Min:求最小值
- Stats:同时求max、min、avg、sum等
- 管道(pipeline)聚合:其它聚合的结果为基础做聚合
注意:参加聚合的字段必须是keyword、日期、数值、布尔类型 ,不做分词操作的字段。
1.2.DSL实现聚合
现在,我们要统计所有数据中的酒店品牌有几种,其实就是按照品牌对数据分组。此时可以根据酒店品牌的名称做聚合,也就是Bucket聚合。
1.2.1.Bucket聚合语法
语法如下:
GET /hotel/_search
{
"aggs": { // 定义聚合
"brandAgg": { //给聚合起个名字
"terms": { // 聚合的类型,按照品牌值聚合,所以选择term
"field": "brand", // 参与聚合的字段
"size": 20 // 显示的聚合结果数量
}
}
}
}
1.2.2.聚合结果排序
默认情况下,Bucket聚合会统计Bucket内的文档数量,记为_count,并且按照_count降序排序。
我们可以指定order属性,自定义聚合的排序方式:
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"order": {
"_count": "asc" // 按照_count升序排列
},
"size": 20
}
}
}
}
1.2.3.限定聚合范围
默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。
我们可以限定要聚合的文档范围,只要添加query条件即可:
GET /hotel/_search
{
"query": {
"range": {
"price": {
"lte": 200 // 只对200元以下的文档聚合
}
}
},
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20
}
}
}
}
1.2.4.Metric聚合语法
桶内聚合,使用聚合函数
语法如下:
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20
},
"aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算
"score_stats": { // 聚合名称
"stats": { // 聚合类型,这里stats可以计算min、max、avg等
"field": "score" // 聚合字段,这里是score
}
}
}
}
}
}
1.2.5.小结
aggs代表聚合,与query同级,此时query的作用是?
- 限定聚合的的文档范围
聚合必须的三要素:
- 聚合名称
- 聚合类型
- 聚合字段
聚合可配置属性有:
- size:指定聚合结果数量
- order:指定聚合结果排序方式
- field:指定聚合字段
1.3.RestAPI实现聚合
@Test
public void testAggs() throws IOException {
//创建搜索请求对象
SearchRequest searchRequest = new SearchRequest("hotel");
//查询条件
searchRequest.source().query(QueryBuilders.matchAllQuery());
//聚合条件
searchRequest.source().aggregation(AggregationBuilders.terms("品牌聚合").field("brand").size(10));
//发送搜索请求
SearchResponse response = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
//处理结果
//获取品牌聚合结果
Aggregation aggregation = response.getAggregations().get("品牌聚合");
//类型强转,获取更多功能
Terms terms = (Terms) aggregation;
//获取桶
List<? extends Terms.Bucket> buckets = terms.getBuckets();
//循环桶,获取每个分组结果
for (Terms.Bucket bucket : buckets) {
String key = bucket.getKeyAsString();
long count = bucket.getDocCount();
System.out.println("品牌名:" + key + ",数量为" + count);
}
}
@Test
public void testAggs() throws IOException {
//创建搜索请求对象
SearchRequest searchRequest = new SearchRequest("hotel");
//查询条件
searchRequest.source().query(QueryBuilders.matchAllQuery());
//聚合条件
searchRequest.source().aggregation(AggregationBuilders.terms("品牌聚合").field("brand").size(10). //按照品牌字段进行聚合,显示10条
subAggregation(AggregationBuilders.stats("stats").field("price"))); //子聚合 ,按照价格做聚合函数 min max avg count sum
//发送查询请求
SearchResponse response = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
//处理结果
//获取品牌聚合结果
Aggregation aggregation = response.getAggregations().get("品牌聚合");
//类型强转,获取更多功能
Terms terms = (Terms) aggregation;
//获取桶
List<? extends Terms.Bucket> buckets = terms.getBuckets();
//循环桶,获取每个分组结果
for (Terms.Bucket bucket : buckets) {
String key = bucket.getKeyAsString();
long count = bucket.getDocCount();
System.out.println("品牌名:" + key + ",数量为" + count);
//子聚合结果
Stats stats = bucket.getAggregations().get("stats");
System.out.println("价格平均值:" + stats.getAvgAsString());
System.out.println("价格总和:" + stats.getSumAsString());
System.out.println("价格最大值:" + stats.getMaxAsString());
System.out.println("价格最小值:" + stats.getMinAsString());
}
}
2.数据同步
elasticsearch中的酒店数据来自于mysql数据库,因此mysql数据发生改变时,elasticsearch也必须跟着改变,这个就是elasticsearch与mysql之间的数据同步。
2.1.思路分析
常见的数据同步方案有三种:
- 同步调用
- 异步通知
- 监听binlog
2.1.1.同步调用
方案一:同步调用
基本步骤如下:
- hotel-demo对外提供接口,用来修改elasticsearch中的数据
- 酒店管理服务在完成数据库操作后,直接调用hotel-demo提供的接口,
2.1.2.异步通知
方案二:异步通知
流程如下:
- hotel-admin对mysql数据库数据完成增、删、改后,发送MQ消息
- hotel-demo监听MQ,接收到消息后完成elasticsearch数据修改
2.1.3.监听binlog
方案三:监听binlog
流程如下:
- 给mysql开启binlog功能
- mysql完成增、删、改操作都会记录在binlog中
- hotel-demo基于canal监听binlog变化,实时更新elasticsearch中的内容
2.1.4.选择
方式一:同步调用
- 优点:实现简单,粗暴
- 缺点:业务耦合度高
方式二:异步通知
- 优点:低耦合,实现难度一般
- 缺点:依赖MQ的可靠性
方式三:监听binlog
- 优点:完全解除服务间耦合
- 缺点:开启binlog增加数据库负担、实现复杂度高
3.集群
单机的elasticsearch做数据存储,必然面临两个问题:海量数据存储问题、单点故障问题。
- 海量数据存储问题:将索引库从逻辑上拆分为N个分片(shard),存储到多个节点
- 单点故障问题:将分片数据在不同节点备份(replica )
ES集群相关概念:
- 集群(cluster):一组拥有共同的 cluster name 的 节点。
- 节点(node)
- 分片(shard):索引可以被拆分为不同的部分进行存储,称为分片。在集群环境下,一个索引的不同分片可以拆分到不同的节点中
解决问题:数据量太大,单点存储量有限的问题。 - 主分片(Primary shard):相对于副本分片的定义。
- 副本分片(Replica shard)每个主分片可以有一个或者多个副本,数据和主分片一样。
数据备份可以保证高可用,但是每个分片备份一份,所需要的节点数量就会翻一倍,成本实在是太高了!
为了在高可用和成本间寻求平衡,我们可以这样做:
- 首先对数据分片,存储到不同节点
- 然后对每个分片进行备份,放到对方节点,完成互相备份
这样可以大大减少所需要的服务节点数量,如图,我们以3分片,每个分片备份一份为例:
现在,每个分片都有1个备份,存储在3个节点:
- node0:保存了分片0和1
- node1:保存了分片0和2
- node2:保存了分片1和2
3.1.集群脑裂问题
3.1.1.集群职责划分
elasticsearch中集群节点有不同的职责划分:
默认情况下,集群中的任何一个节点都同时具备上述四种角色。
但是真实的集群一定要将集群职责分离:
- master节点:对CPU要求高,但是内存要求低
- data节点:对CPU和内存要求都高
- coordinating节点:对网络带宽、CPU要求高
职责分离可以让我们根据不同节点的需求分配不同的硬件去部署。而且避免业务之间的互相干扰。
一个典型的es集群职责划分如图:
3.1.2.脑裂问题
脑裂是因为集群中的节点失联导致的。
例如一个集群中,主节点与其它节点失联:
此时,node2和node3认为node1宕机,就会重新选主:
当node3当选后,集群继续对外提供服务,node2和node3自成集群,node1自成集群,两个集群数据不同步,出现数据差异。
当网络恢复后,因为集群中有两个master节点,集群状态的不一致,出现脑裂的情况:
解决脑裂的方案是,要求选票超过 ( eligible节点数量 + 1 )/ 2 才能当选为主,因此eligible节点数量最好是奇数。对应配置项是discovery.zen.minimum_master_nodes,在es7.0以后,已经成为默认配置,因此一般不会发生脑裂问题
例如:3个节点形成的集群,选票必须超过 (3 + 1) / 2 ,也就是2票。node3得到node2和node3的选票,当选为主。node1只有自己1票,没有当选。集群中依然只有1个主节点,没有出现脑裂。
3.1.3.小结
master eligible节点的作用是什么?
- 参与集群选主
- 主节点可以管理集群状态、管理分片信息、处理创建和删除索引库的请求
data节点的作用是什么?
- 数据的CRUD
coordinator节点的作用是什么?
- 路由请求到其它节点
- 合并查询到的结果,返回给用户
3.2.集群分布式存储
当新增文档时,应该保存到不同分片,保证数据均衡,那么coordinating node如何确定数据该存储到哪个分片呢?
3.2.1.分片存储原理
elasticsearch会通过hash算法来计算文档应该存储到哪个分片:
说明:
- _routing默认是文档的id
- 算法与分片数量有关,因此索引库一旦创建,分片数量不能修改!
新增文档的流程如下:
解读:
- 1)新增一个id=1的文档
- 2)对id做hash运算,假如得到的是2,则应该存储到shard-2
- 3)shard-2的主分片在node3节点,将数据路由到node3
- 4)保存文档
- 5)同步给shard-2的副本replica-2,在node2节点
- 6)返回结果给coordinating-node节点
3.3.集群分布式查询
elasticsearch的查询分成两个阶段:
- scatter phase:分散阶段,coordinating node会把请求分发到每一个分片
- gather phase:聚集阶段,coordinating node汇总data node的搜索结果,并处理为最终结果集返回给用户
3.4.集群故障转移
集群的master节点会监控集群中的节点状态,如果发现有节点宕机,会立即将宕机节点的分片数据迁移到其它节点,确保数据安全,这个叫做故障转移。
1)例如一个集群结构如图:
现在,node1是主节点,其它两个节点是从节点。
2)突然,node1发生了故障:
宕机后的第一件事,需要重新选主,例如选中了node2:
node2成为主节点后,会检测集群监控状态,发现:shard-1、shard-0没有副本节点。因此需要将node1上的数据迁移到node2、node3: