一、本课程是怎么样的一门课程(全面介绍)



 



   1.1、课程的背景



 



作为企业Hadoop应用的核心产品,Hive承载着FaceBook、淘宝等大佬 95%以上的离线统计,很多企业里的离线统计甚至全由Hive完成,如我所在的电商。



Hive在企业云计算平台发挥的作用和影响愈来愈大,如何优化提速已经显得至关重要。



Hive作业的规模决定着优化层级,一个Hive作业的优化和一万的Hive作业的优化截然不同。



拥有1万多个Hive作业的大电商如何进行Hive优化的?本系列课结合企业实战和场景从作业架构层面、Hql(Hive sql)语法层面、Hive参数层面依次讲述。



 



 



 1.2、课程内容简介



 



当然,好的架构胜过任何优化,有哪些策略构建好Hive Job架构?



好的Hql同样会效率大增,如何写出高效的Hql?



修改Hive参数,有时也能起到很好的效果



 



1.3、课程大纲



            第一章:架构方面优化策略(5讲)



                            Hadoop的主要性能瓶颈是IO负载,降IO负载是优化的重头戏。



                 本章大纲:
                                  作业架构优化手段大探底
                                 多个降IO负载的策略和场景...
                                 分表、源表归纳
                                 合理设计表分区、动态分区
                                 压缩、分布式缓存



               第二章:Hive Sql语法层面和Properties参数层面优化(4讲)



                              语法优化手段归纳
                              Map数和Reduce数的决定和控制及案例分析
                              数据倾斜的避免和解决办法
                              执行计划剖析,从执行计划上找倾斜根本
                              Properties参数
                              高效Join、MapJoin、SEMI JOIN
                             减少Job 合并MR
                             Mapreduce中间参数



              第三章:Impala熟悉和使用(1讲)



                              Impala是Cloudera 公司推出仿Hive的一个产品,目前已经有稳定的发行版本。
                              理论上性能比Hive好,但目前版本功能和扩展性上远不能替代Hive。
                              未来该产品或会有一定影响力。
                              特点:同Hive一样是类sql产品
                                       公用Hive的元数据库



 



第一讲:Hive体系结构及Hive作业形式



第二讲:Hive优化策略大探底及架构优化案例一



第三讲:架构优化案例二之降IO负载策略I



第四讲:架构优化案例二之降IO负载策略II



第五讲:架构优化案例二之降IO负载策略III—压缩和分布式缓存



第六讲:Hive语法、参数层面优化一



第七讲:Hive语法、参数层面优化二



第八讲:Hive语法、参数层面优化三