GA算法-R语言实现
旅行商问题
班共有30位同学,来自22个地区,我们希望在假期来一次说走就走的旅行,将所有同学的家乡走一遍。算起来,路费是一笔很大的花销,所以希望设计一个旅行方案,确保这一趟走下来的总路程最短。
旅行商问题是一个经典的NP问题
NP就是Non-deterministic Polynomial,即多项式复杂程度的非确定性问题,是世界七大数学难题之一。
如果使用枚举法求解,22个地点共有:
(22-1)!/2 = 25545471085854720000 种路线方案
GA算法
遗传算法将“优胜劣汰,适者生存”的生物进化原理引入优化参数形成的编码串联群体中,按所选择的适应度函数并通过遗传中的复制、交叉及变异对个体进行筛选,使适应度高的个体被保留下来,组成新的群体,新的群体既继承了上一代的信息,又优于上一代。这样周而复始,群体中个体适应度不断提高,直到满足一定的条件。遗传算法的算法简单,可并行处理,并能到全局最优解。
GA算法设计
1.生成原始染色体种群
采用实数编码,以N个城市的序号作为一条可能的路径。 例如对8个城市,可生成如下的染色体代表一条路径,8,6,4,2,7,5,3,1.重复操作生成数目等于n的染色体种群。
2.生成适应度函数
由于是求最短路径,适应度函数一般求函数最大值,所以取路径总长度T的倒数,即fitness=1/T。
3.选择染色体
采用轮盘赌的方式产生父代染色体。
4.对染色体种群进行编码
假设有一个含有九个城市的列表:W=(A,B,C,D,E,F,G,H,I)。
有如下两条路线:
W1=(A,D,B,H,F,I,G,E,C)
W2=(B,C,A,D,E,H,I,F,G)
则这两条路线可编码为:
W1=(142869753)
W2=(231458967)
5.交叉
以概率Pc选择参加交叉的个体(偶数个),用两点交叉算子进行操作。
例如对于下面两个染色体个体
(1 3 4 | 5 2 9 | 8 6 7)
(1 7 6 | 9 5 2 | 4 3 8)
通过两点交叉可得到子代染色体为
(1 3 4 | 9 5 2 | 8 6 7)
(1 7 6 | 5 2 9 | 4 3 8)
6.变异
以概率Pm选择参加变异的个体,用对换变异进行操作。随机的选择个体中的两个位点,进行交换基因。
如A=123456789;如果对换点为4和7,则经过对换后为B=123756489
7.解码
对染色体进行解码,恢复染色体的实数表示方法。
8.逐代进化
根据得出的新的染色体,再次返回选择染色体的步骤,进行迭代,直到达到迭代次数,算法停止。
算法实现
#加载packages
library(sp)
library(maptools)
library(geosphere)
source("C:\\Users\\ShangFR\\Desktop\\路径优化\\GA算法脚本.R")
data=read.csv("C:\\Users\\ShangFR\\Desktop\\路径优化\\143地理坐标.csv") #读取城市经纬度数据
border <- readShapePoly("C:\\Users\\ShangFR\\Desktop\\路径优化\\map\\bou2_4p.shp") #读取各省的边界数据等
#初始化(列出地区距离矩阵-聚类)
da=data[,1:2]
rownames(da)=data[,3]
hc=hclust(dist(da))
cutree(hc, h = 10)
plot(hc)
route=CreatDNA(data,5)
x = route[,1]
y = route[,2]
z = route[,3]
cols=route[,4]
muer.lonlat = cbind(route[,1],route[,2]) # matrix
muer.dists = distm(muer.lonlat, fun=distVincentyEllipsoid) # 精确计算,椭圆 ans=round(muer.dists/1000,2) roundots = list(x=x,y=y,ans=ans,z=z,cols=cols) species = GA4TSP(dots=roundots,initDNA=NULL,N=50,cp=0.1,vp=0.01,maxIter=1000,maxStay=100,maxElite=2,drawing=TRUE)
#粗糙地计算总路程上界
#粗糙地计算总路程上界
UpperBound
=
function(disM)
{
mx
=
apply
(disM,
1
,
max
)
#两城市间最长距离
return
(
sum
(mx) )
#最长旅行路径
}
#生成随机染色体
rndDNA
=
function(n)
{
return
( seq(
1
,n,
1
) )
#随机生成n条旅行路径
}
#对一个解计算总路程的距离
calcScores
=
function(dna,disM)
{
n
=
length(dna)
#城市总数
tmp
=
cbind(dna[
1
:n],c(dna[
2
:n],dna[
1
]))
#生成起始点城市
len
=
apply
(tmp,
1
,function(x) disM[x[
1
],x[
2
]])
len
=
sum
(
len
)
return
(
len
)
#返回此条旅行路径总距离
}
#根据每条染色体的分数计算权重,并以此抽样
roller
=
function(scores,k)
{
scores
=
max
(scores)
-
scores
+
1
props
=
scores
/
sum
(scores)
N
=
length(scores)
mxind
=
which.
max
(scores)
#保留最优染色体
ans
=
sample((
1
:N)[
-
mxind],k
-
1
,replace
=
F,prob
=
props[
-
mxind])
return
(c(mxind,ans))
}
#种群中的繁殖过程
crossEvolve
=
function(i,nGroup,crossGroup,prop)
{
a
=
nGroup[i,]
b
=
crossGroup[i,]
n
=
length(a)
m
=
max
(
1
,trunc(n
*
prop))
tmpa
=
a
st
=
sample(
1
:n,
1
)
ind
=
st:(st
+
m)
#indication 指示、索引
if
(st
+
m>n)
{
bind
=
which(ind>n)
ind[bind]
=
ind[bind]
%
%
n
+
1
}
cross
=
intersect(b,a[ind])
tmpa[ind]
=
cross
return
(tmpa)
}
#染色体的自我变异
selfVariation
=
function(dna,prop)
{
n
=
length(dna)
pos
=
which(runif(n)<prop)
if
(length(pos)
=
=
0
)
return
(dna)
pos
=
sample(pos,
1
)
newind
=
sample((
1
:n)[
-
pos],
1
)
if
(pos>newind)
{
tmp
=
dna[newind:n]
tmp
=
tmp[
-
(pos
-
newind
+
1
)]
dna[newind]
=
dna[pos]
dna[(newind
+
1
):n]
=
tmp
}
else
{
tmp
=
dna[
1
:newind]
tmp
=
tmp[
-
pos]
dna[newind]
=
dna[pos]
dna[
1
:(newind
-
1
)]
=
tmp
}
return
(dna)
}
#以某条染色体代表的解做图
drawIt
=
function(dots,dna,xlab
=
NULL,ylab
=
NULL,main
=
NULL,sub
=
NULL,col
=
NULL)
{
#win.graph(width=800, height=800, pointsize=12)
x
=
dots[[
1
]]
y
=
dots[[
2
]]
z
=
dots[[
4
]]
cols
=
dots[[
5
]]
+
10
if
(
is
.null(main))
{
scores
=
calcScores(dna,dots[[
3
]])
#画地图
plot(border,border
=
"#BBFFFF"
,col
=
"#FF7F00"
,ylim
=
c(
18
,
54
), panel.first
=
grid(),
main
=
paste(
"总路程"
,scores,
"公里"
),xlab
=
"经度"
,ylab
=
"纬度"
,sub
=
paste(
'优化结束-第'
,sub,
'代'
));
#增加省会城市坐标点
points(x,y,pch
=
19
,col
=
cols)
text(x,y,z,pos
=
1
,cex
=
0.5
)
n
=
length(dna)
for
(i
in
1
:(n
-
1
)){
Sys.sleep(
0.3
)
lines(x[dna[i:(i
+
1
)]],y[dna[i:(i
+
1
)]],col
=
"#00FFFF"
,lwd
=
3
)}
lines(x[dna[c(n,
1
)]],y[dna[c(n,
1
)]],col
=
"#00FFFF"
,lwd
=
3
)
}
else
{
#画地图
plot(border,border
=
"#BBFFFF"
,col
=
"#FF7F00"
,ylim
=
c(
18
,
54
),main
=
paste(
"总路程"
,main,
"公里"
),
xlab
=
"经度"
,ylab
=
"纬度"
,sub
=
paste(
'第'
,sub,
'代'
))
points(x,y,pch
=
19
,col
=
cols)
if
(sub
=
=
1
)Sys.sleep(
5
)
else
{
n
=
length(dna)
for
(i
in
1
:(n
-
1
))
lines(x[dna[i:(i
+
1
)]],y[dna[i:(i
+
1
)]],col
=
"#00FFFF"
,lwd
=
3
)
lines(x[dna[c(n,
1
)]],y[dna[c(n,
1
)]],col
=
"#00FFFF"
,lwd
=
3
)
}}}
#Genetic Algorithm for Traveller Salesman Problem
GA4TSP
=
function(dots,initDNA
=
NULL,N,cp,vp,maxIter,maxStay,maxElite,drawing)
{
disM
=
dots[[
3
]]
n
=
nrow(disM)
if
(N
%
%
2
>
0
)
N
=
N
+
1
Group
=
t(sapply(rep(n,N),rndDNA))
if
(!
is
.null(initDNA)) Group[
1
,]
=
initDNA
maxL
=
UpperBound(disM)
stopFlag
=
FALSE
iterCount
=
1
stayCount
=
0
allBest
=
maxL
eliteBest
=
maxL
elite
=
mat.
or
.vec(maxElite,n)
elitecount
=
0
eracount
=
0
LastEra
=
maxL
outputRecorder
=
NULL
GenerationRecorder
=
NULL
showScore
=
FALSE
eliteInto
=
FALSE
#初始化结束
while
(!stopFlag)
{
cat(
'Generation:'
,iterCount,
'Era:'
,eracount,
'Elite:'
,elitecount)
scores
=
apply
(Group,
1
,calcScores,disM)
bestScore
=
min
(scores)
mind
=
which.
min
(scores)
bestDNA
=
Group[mind,]
#记录最佳染色体
#更新时代、精英的信息
if
(bestScore<eliteBest)
{
stayCount
=
0
eliteBest
=
bestScore
eliteDNA
=
bestDNA
if
(eliteBest<allBest)
{
allBest
=
eliteBest
allDNA
=
eliteDNA
outputRecorder
=
rbind(outputRecorder,allDNA)
GenerationRecorder
=
c(GenerationRecorder,iterCount)
if
(drawing)
drawIt(dots,allDNA,main
=
as.character(allBest),sub
=
iterCount)
}
}
else
stayCount
=
stayCount
+
1
if
(stayCount
=
=
maxStay)
{
stayCount
=
0
eliteBest
=
maxL
elitecount
=
elitecount
+
1
elite[elitecount,]
=
eliteDNA
scores
=
apply
(Group,
1
,calcScores,disM)
a
=
which(scores
=
=
min
(scores))
nind
=
sample((
1
:N)[
-
a],length(a))
Group[a,]
=
Group[nind,]
eliteInto
=
TRUE
scores
=
apply
(Group,
1
,calcScores,disM)
bestScore
=
min
(scores)
mind
=
which.
min
(scores)
bestDNA
=
Group[mind,]
}
if
(elitecount
=
=
maxElite)
{
Group[
1
:elitecount,]
=
elite
elite
=
mat.
or
.vec(maxElite,n)
elitecount
=
0
stayCount
=
0
eliteBest
=
maxL
eracount
=
eracount
+
1
maxStay
=
maxStay
+
20
showScore
=
TRUE
scores
=
apply
(Group,
1
,calcScores,disM)
bestScore
=
min
(scores)
mind
=
which.
min
(scores)
bestDNA
=
Group[mind,]
}
#对种群计算分数,产生繁殖与变异
succind
=
roller(scores,N
/
2
)
nGroup
=
Group[succind,]
#取最优和一半高权重优秀基因
crossind
=
sample(succind,N
/
2
)
crossGroup
=
Group[crossind,]
#取最优和一半高权重优秀基因,打乱顺序
crossans
=
t(sapply(
1
:(N
/
2
),crossEvolve,nGroup,crossGroup,cp))
crossGroup
=
rbind(nGroup,crossans)
Group
=
t(
apply
(crossGroup,
1
,selfVariation,vp))
if
(eliteInto)
eliteInto
=
FALSE
else
Group[
1
,]
=
bestDNA
stopFlag
=
(iterCount>
=
maxIter)
iterCount
=
iterCount
+
1
cat(
' Best:'
,bestScore,
'All:'
,allBest,
'Stay:'
,paste(stayCount,
'/'
,maxStay,sep
=
'
'),'
\n')
if
(showScore)
{
scores
=
apply
(Group,
1
,calcScores,disM)
show(scores[
1
:(N
/
2
)])
show(scores[(N
/
2
+
1
):(N)])
#Sys.sleep(1)
showScore
=
FALSE
}
}
if
(drawing)
drawIt(dots,allDNA,sub
=
maxIter)
return
(
list
(DNA
=
outputRecorder,Generation
=
GenerationRecorder))
}
#生成初始染色体
CreatDNA
=
function(data,i)
{
hc
=
hclust(dist(data[,
1
:
2
]))
data\(col</code><code class="python keyword">=</code><code class="python plain">cutree(hc, k </code><code class="python keyword">=</code> <code class="python plain">i) </code><code class="python comments">#k = 1 is trivial</code></div><div class="line number250 index249 alt1"><code class="python plain">INITDNA</code><code class="python keyword">=</code><code class="python plain">data[order(data\)col),]
rownames(INITDNA)
=
NULL
return
(INITDNA)
}