1.3、贝叶斯分类的基础——贝叶斯定理
每次提到贝叶斯定理,我心中的崇敬之情都油然而生,倒不是因为这个定理多高深,而是因为它特别有用。这个定理解决了现实生活里经常遇到的问题:已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。这里先解释什么是条件概率:
表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。其基本求解公式为:
。
贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P(A|B),P(B|A)则很难直接得出,但我们更关心P(B|A),贝叶斯定理就为我们打通从P(A|B)获得P(B|A)的道路。
下面不加证明地直接给出贝叶斯定理:
1.4、朴素贝叶斯分类
1.4.1、朴素贝叶斯分类的原理与流程
真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。通俗来说,就好比这么个道理,你在街上看到一个黑人,我问你你猜这哥们哪里来的,你十有八九猜非洲。为什么呢?因为黑人中非洲人的比率最高,当然人家也可能是美洲人或亚洲人,但在没有其它可用信息下,我们会选择条件概率最大的类别,这就是朴素贝叶斯的思想基础。
朴素贝叶斯分类的正式定义如下:
1、设
为一个待分类项,而每个a为x的一个特征属性。 2、有类别集合
。 3、计算
。 4、如果
,则
。
那么现在的关键就是如何计算第3步中的各个条件概率。我们可以这么做:
1、找到一个已知分类的待分类项集合,这个集合叫做训练样本集。
2、统计得到在各类别下各个特征属性的条件概率估计。即
。
3、如果各个特征属性是条件独立的,则根据贝叶斯定理有如下推导:
因为分母对于所有类别为常数,因为我们只要将分子最大化皆可。又因为各特征属性是条件独立的,所以有:
根据上述分析,朴素贝叶斯分类的流程可以由下图表示(暂时不考虑验证):
可以看到,整个朴素贝叶斯分类分为三个阶段:
第一阶段——准备工作阶段,这个阶段的任务是为朴素贝叶斯分类做必要的准备,主要工作是根据具体情况确定特征属性,并对每个特征属性进行适当划分,然后由人工对一部分待分类项进行分类,形成训练样本集合。这一阶段的输入是所有待分类数据,输出是特征属性和训练样本。这一阶段是整个朴素贝叶斯分类中唯一需要人工完成的阶段,其质量对整个过程将有重要影响,分类器的质量很大程度上由特征属性、特征属性划分及训练样本质量决定。
第二阶段——分类器训练阶段,这个阶段的任务就是生成分类器,主要工作是计算每个类别在训练样本中的出现频率及每个特征属性划分对每个类别的条件概率估计,并将结果记录。其输入是特征属性和训练样本,输出是分类器。这一阶段是机械性阶段,根据前面讨论的公式可以由程序自动计算完成。
第三阶段——应用阶段。这个阶段的任务是使用分类器对待分类项进行分类,其输入是分类器和待分类项,输出是待分类项与类别的映射关系。这一阶段也是机械性阶段,由程序完成。
1.4.2、估计类别下特征属性划分的条件概率及Laplace校准
这一节讨论P(a|y)的估计。
由上文看出,计算各个划分的条件概率P(a|y)是朴素贝叶斯分类的关键性步骤,当特征属性为离散值时,只要很方便的统计训练样本中各个划分在每个类别中出现的频率即可用来估计P(a|y),下面重点讨论特征属性是连续值的情况。
当特征属性为连续值时,通常假定其值服从高斯分布(也称正态分布)。即:
而
因此只要计算出训练样本中各个类别中此特征项划分的各均值和标准差,代入上述公式即可得到需要的估计值。均值与标准差的计算在此不再赘述。
另一个需要讨论的问题就是当P(a|y)=0怎么办,当某个类别下某个特征项划分没有出现时,就是产生这种现象,这会令分类器质量大大降低。为了解决这个问题,我们引入Laplace校准,它的思想非常简单,就是对没类别下所有划分的计数加1,这样如果训练样本集数量充分大时,并不会对结果产生影响,并且解决了上述频率为0的尴尬局面。
1.4.3、朴素贝叶斯分类实例:检测SNS社区中不真实账号
下面讨论一个使用朴素贝叶斯分类解决实际问题的例子,为了简单起见,对例子中的数据做了适当的简化。
真实账号(使用虚假身份或用户的小号)是一个普遍存在的问题,作为SNS社区的运营商,希望可以检测出这些不真实账号,从而在一些运营分析报告中避免这些账号的干扰,亦可以加强对SNS社区的了解与监管。
真实账号和不真实账号两个类别上进行分类,下面我们一步一步实现这个过程。
真实账号,C=1表示不真实账号。
1、确定特征属性及划分
真实账号与不真实账号的特征属性,在实际应用中,特征属性的数量是很多的,划分也会比较细致,但这里为了简单起见,我们用少量的特征属性以及较粗的划分,并对数据做了修改。
真实头像。在SNS社区中这三项都是可以直接从数据库里得到或计算出来的。
下面给出划分:a1:{a<=0.05, 0.05<a<0.2, a>=0.2},a1:{a<=0.1, 0.1<a<0.8, a>=0.8},a3:{a=0(不是),a=1(是)}。
2、获取训练样本
这里使用运维人员曾经人工检测过的1万个账号作为训练样本。
3、计算训练样本中每个类别的频率
真实账号和不真实账号数量分别除以一万,得到:
4、计算每个类别条件下各个特征属性划分的频率
5、使用分类器进行鉴别
真实头像,日志数量与注册天数的比率为0.1,好友数与注册天数的比率为0.2。
真实头像,但是通过分类器的鉴别,更倾向于将此账号归入真实账号类别。这个例子也展示了当特征属性充分多时,朴素贝叶斯分类对个别属性的抗干扰性。
1.5、分类器的评价
虽然后续还会提到其它分类算法,不过这里我想先提一下如何评价分类器的质量。
首先要定义,分类器的正确率指分类器正确分类的项目占所有被分类项目的比率。
通常使用回归测试来评估分类器的准确率,最简单的方法是用构造完成的分类器对训练数据进行分类,然后根据结果给出正确率评估。但这不是一个好方法,因为使用训练数据作为检测数据有可能因为过分拟合而导致结果过于乐观,所以一种更好的方法是在构造初期将训练数据一分为二,用一部分构造分类器,然后用另一部分检测分类器的准确率。
贝叶斯网络推理算法大致可分为精确推理算法和挖推理算法两类。精确推理算法希望能计算出目标变量的边际分布或条件分布的精确值,然而此类算法的计算复杂度随着极大团规模的增长呈指数增长,因此仅适用于贝叶斯网络的规模较小时。当贝叶斯网络的规模较大时,多采用近似推理,近似推理算法可以在较低时间复杂度下获得原问题的近似解。
在【周志华. 机器学习[M]. 清华大学出版社,2016.】的14.4节(学习与推断)中介绍了两种精确推理算法(变量消去和信念传播),14.5节介绍了两种近似推理算法(MCMC采样和变分推断)。
联结树(Junction Tree Propagation)推理算法;基于组合优化的求解方法,如符号推理(Symbolic ProbabilisticInference)和桶消元推理(Bucket Elemination
并在接下来的2.6节较为详细地介绍了多树传播推理算法和联结树推理算法。
在【厉海涛, 金光, 周经伦,等.贝叶斯网络推理算法综述[J]. 系统工程与电子技术,2008, 30(5):935-939.】中共介绍了6种精确推理算法和4种近似推理算法,如表所示:
在不同的中文文献中,对各算法的翻译可能不一样,所以上面列出的推理算法多种多样,其实有些本质是相同的,这里也不再去细究,毕竟我们不是专门研究贝叶斯推理算法的,仅仅是想用某工具箱实现推理过程即可。鉴于接下来使用工具箱FullBNT-1.0.4进行实现,工具箱中常用的共有四种推理引擎:
变量消元推理引擎Variable elimination inference engine: engine = var_elim_inf_engine(bnet)
For details on variable elimination, see
-R. Dechter, "Bucket Elimination: A Unifying Framework forProbabilistic Inference", UA1 96, pp. 211-219.
-Z. Li and B. D'Ambrosio, "Efficient inference in Bayes networks as a combinatorial optimization problem",Intl. J. Approximate Reasoning, 11(1):55-81, 1994
-R. McEliece and S. M. Aji, "The Generalized Distributive Law", IEEETrans. Inform. Theory, 46(2), 2000
信念传播推理引擎Make a loopy belief propagation
This is like pearl_inf_engine,except it uses potential objects, instead of lambda/pi structs. Hence it is slower.
联结树推理引擎Junction tree inference engine: engine = jtree_inf_engine(bnet)
For more details on the junction tree algorithm, see
-"Probabilistic networks and expert systems", Cowell, Dawid, Lauritzenand Spiegelhalter, Springer, 1999
-"Inference in Belief Networks: A procedural guide", C. Huang and A.Darwiche, Intl. J. Approximate Reasoning, 15(3):225-263, 1996.
全局联合推理引擎Contruct the global joint distribution
这里反复出现的关键字“引擎(engine)”是什么意思呢?接下来简单探讨一下其含义。
(1)有关BNT工具箱,很多网上资料的描述均出自【蒋望东, 林士敏.基于贝叶斯网络工具箱的贝叶斯学习和推理[J]. 信息技术,2007(2):5-8.】,该文献对“引擎”的描述如下:
为了提高运算速度,使各种推理算法能够有效应用,BNT工具箱采用了引擎机制,不同的引擎根据不同的算法来完成模型转换、细化和求解。
(2)另外,也可能指的是MATLAB引擎机制:所谓Matlab引擎(engine),是指一组Matlab提供的接口函数,支持C/C++、Fortran等语言,通过这些接口函数,用户可以在其它编程环境中实现对Matlab的控制。
参见链接:http://npfeng900.blog.163.com/blog/static/1445610820128193458490/
因此,MATLAB引擎应该是MATLAB混合编程技术(应用程序接口)技术的一种。
参见链接:http://npfeng900.blog.163.com/blog/static/14456108201281895346540
(3)另外,在维基百科中专门有一个词条“inference engine”:In the field of Artificial Intelligence, inference engine
百度百科中专门有一个词条“推理引擎”:推理引擎就是应用系统中用来完成推理功能的模块,也可以称作推理机。
不知道这里的“引擎”到底做何解释?
附录一:变量消元
摘自【周志华. 机器学习[M]. 清华大学出版社,2016.】14.4.1节。
附录二:信念传播
摘自【周志华. 机器学习[M]. 清华大学出版社,2016.】14.4.2节。
附录三:联结树推理算法
该算法应用较多可以大致理解一下其思路。
摘自【刘俊娜. 贝叶斯网络推理算法研究[D]. 合肥工业大学, 2007.】2.6.2节。
联结树算法亦可参见:https://wenku.baidu.com/view/dd5b7c2651e79b89680226e8.html
附录四:全局联合推理算法
并没有找到全司联合推理算法的详细描述文献,仅找到一段简单的描述:
摘自【胡大伟. 动态贝叶斯网络的近似推理算法研究[D]. 合肥工业大学,2009.】2.3节:
其中全局联合推理算法是先通过建立所有结点的联合概率分布,然后再边缘化,进而计算所求结点的概率分布的方式进行推理;