在《HDFS源码分析心跳汇报之整体结构》一文中,我们详细了解了HDFS中关于心跳的整体结构,知道了BlockPoolManager、BPOfferService和BPServiceActor三者之间的关系。那么,HDFS心跳相关的这些数据结构,都是如何被初始化的呢?本文,我们就开始研究HDFS心跳汇报之数据结构初始化。
首先,在DataNode节点启动时所必须执行的startDataNode()方法中,有如下代码:
// DataNode启动时执行的startDataNode()方法
// 构造一个BlockPoolManager实例
// 调用其refreshNamenodes()方法
blockPoolManager = new BlockPoolManager(this);
blockPoolManager.refreshNamenodes(conf);
它构造了一个BlockPoolManager实例,并调用其refreshNamenodes()方法,完成NameNodes的刷新。我们来看下这个方法:
void refreshNamenodes(Configuration conf)
throws IOException {
LOG.info("Refresh request received for nameservices: " + conf.get
(DFSConfigKeys.DFS_NAMESERVICES));
// 从配置信息conf中获取nameserviceid->{namenode名称->InetSocketAddress}的映射集合newAddressMap
Map<String, Map<String, InetSocketAddress>> newAddressMap = DFSUtil
.getNNServiceRpcAddressesForCluster(conf);
// 需要通过使用synchronized关键字在refreshNamenodesLock上加互斥锁
synchronized (refreshNamenodesLock) {
// 调用doRefreshNamenodes()方法执行集合newAddressMap中的刷新
doRefreshNamenodes(newAddressMap);
}
}
很简单,两大步骤:第一步,从配置信息conf中获取nameserviceid->{namenode名称->InetSocketAddress}的映射集合newAddressMap,第二步调用doRefreshNamenodes()方法执行集合newAddressMap中NameNodes的刷新。
首先,我们看下如何从配置信息conf中获取nameserviceid->{namenode名称->InetSocketAddress}的映射集合newAddressMap,相关代码如下:
/**
* Returns list of InetSocketAddresses corresponding to the namenode
* that manages this cluster. Note this is to be used by datanodes to get
* the list of namenode addresses to talk to.
*
* Returns namenode address specifically configured for datanodes (using
* service ports), if found. If not, regular RPC address configured for other
* clients is returned.
*
* @param conf configuration
* @return list of InetSocketAddress
* @throws IOException on error
*/
public static Map<String, Map<String, InetSocketAddress>>
getNNServiceRpcAddressesForCluster(Configuration conf) throws IOException {
// Use default address as fall back
String defaultAddress;
try {
// 获取默认地址defaultAddress
defaultAddress = NetUtils.getHostPortString(NameNode.getAddress(conf));
} catch (IllegalArgumentException e) {
defaultAddress = null;
}
// 获取hdfs的内部命名服务:dfs.internal.nameservices,得到集合parentNameServices
Collection<String> parentNameServices = conf.getTrimmedStringCollection
(DFSConfigKeys.DFS_INTERNAL_NAMESERVICES_KEY);
if (parentNameServices.isEmpty()) {// 如果没有配置dfs.internal.nameservices
// 获取dfs.nameservices,赋值给集合parentNameServices
parentNameServices = conf.getTrimmedStringCollection
(DFSConfigKeys.DFS_NAMESERVICES);
} else {
// Ensure that the internal service is ineed in the list of all available
// nameservices.
// 获取dfs.nameservices
Set<String> availableNameServices = Sets.newHashSet(conf
.getTrimmedStringCollection(DFSConfigKeys.DFS_NAMESERVICES));
// 验证parentNameServices中的每个nsId在dfs.nameservices中是否都存在
// 即参数dfs.internal.nameservices包含在参数dfs.nameservices范围内
for (String nsId : parentNameServices) {
if (!availableNameServices.contains(nsId)) {
throw new IOException("Unknown nameservice: " + nsId);
}
}
}
// 调用getAddressesForNsIds()方法,获取nameserviceId->{nameNodeId->InetSocketAddress}对应关系的集合
// dfs.namenode.servicerpc-address
// dfs.namenode.rpc-address
Map<String, Map<String, InetSocketAddress>> addressList =
getAddressesForNsIds(conf, parentNameServices, defaultAddress,
DFS_NAMENODE_SERVICE_RPC_ADDRESS_KEY, DFS_NAMENODE_RPC_ADDRESS_KEY);
if (addressList.isEmpty()) {
throw new IOException("Incorrect configuration: namenode address "
+ DFS_NAMENODE_SERVICE_RPC_ADDRESS_KEY + " or "
+ DFS_NAMENODE_RPC_ADDRESS_KEY
+ " is not configured.");
}
return addressList;
}
这个方法的处理逻辑如下:
1、首先,根据NameNode类的静态方法getAddress()从配置信息中获取默认地址defaultAddress;
2、然后,获取hdfs的内部命名服务:dfs.internal.nameservices,得到集合parentNameServices:
2.1、如果没有配置dfs.internal.nameservices,获取dfs.nameservices,赋值给集合parentNameServices;
2.2、如果配置了dfs.internal.nameservices,再获取获取dfs.nameservices,得到availableNameServices,验证parentNameServices中的每个nsId在availableNameServices中是否都存在,即参数dfs.internal.nameservices包含在参数dfs.nameservices范围内;
3、调用getAddressesForNsIds()方法,利用conf、parentNameServices、defaultAddress等获取nameserviceId->{nameNodeId->InetSocketAddress}对应关系的集合addressList,并返回。
下面,我们再看下getAddressesForNsIds()方法,代码如下:
/**
* Returns the configured address for all NameNodes in the cluster.
* @param conf configuration
* @param nsIds
*@param defaultAddress default address to return in case key is not found.
* @param keys Set of keys to look for in the order of preference @return a map(nameserviceId to map(namenodeId to InetSocketAddress))
*/
private static Map<String, Map<String, InetSocketAddress>>
getAddressesForNsIds(Configuration conf, Collection<String> nsIds,
String defaultAddress, String... keys) {
// Look for configurations of the form <key>[.<nameserviceId>][.<namenodeId>]
// across all of the configured nameservices and namenodes.
// dfs.namenode.servicerpc-address
// dfs.namenode.rpc-address
Map<String, Map<String, InetSocketAddress>> ret = Maps.newLinkedHashMap();
// 遍历每个nameserviceId,做以下处理:
for (String nsId : emptyAsSingletonNull(nsIds)) {
// 通过getAddressesForNameserviceId()方法获取nameNodeId->InetSocketAddress的对应关系,nameNodeId来自参数dfs.ha.namenodes.nsId
Map<String, InetSocketAddress> isas =
getAddressesForNameserviceId(conf, nsId, defaultAddress, keys);
if (!isas.isEmpty()) {
// 将nameserviceId->{nameNodeId->InetSocketAddress}的对应关系放入集合ret
ret.put(nsId, isas);
}
}
// 返回nameserviceId->{nameNodeId->InetSocketAddress}对应关系的集合ret
return ret;
}
非常简单,遍历每个nameserviceId,做以下处理:
1、通过getAddressesForNameserviceId()方法获取nameNodeId->InetSocketAddress的对应关系,nameNodeId来自参数dfs.ha.namenodes.nsId;
2、将nameserviceId->{nameNodeId->InetSocketAddress}的对应关系放入集合ret;
3、最后返回nameserviceId->{nameNodeId->InetSocketAddress}对应关系的集合ret。
继续看getAddressesForNameserviceId()方法,如下:
private static Map<String, InetSocketAddress> getAddressesForNameserviceId(
Configuration conf, String nsId, String defaultValue,
String... keys) {
// keys
// dfs.namenode.servicerpc-address
// dfs.namenode.rpc-address
// 获取dfs.ha.namenodes.nsId
Collection<String> nnIds = getNameNodeIds(conf, nsId);
Map<String, InetSocketAddress> ret = Maps.newHashMap();
for (String nnId : emptyAsSingletonNull(nnIds)) {
String suffix = concatSuffixes(nsId, nnId);
// 根据keys获取address
String address = getConfValue(defaultValue, suffix, conf, keys);
if (address != null) {
// 将address封装成InetSocketAddress,得到isa
InetSocketAddress isa = NetUtils.createSocketAddr(address);
if (isa.isUnresolved()) {
LOG.warn("Namenode for " + nsId +
" remains unresolved for ID " + nnId +
". Check your hdfs-site.xml file to " +
"ensure namenodes are configured properly.");
}
// 将nnId->InetSocketAddress的对应关系放入到Map中
ret.put(nnId, isa);
}
}
return ret;
}
它通过参数获取dfs.ha.namenodes.nsId获取到NameNodeId的集合nnIds,然后针对每个NameNode,根据keys获取address,这keys传递进来的就是dfs.namenode.servicerpc-address、dfs.namenode.rpc-address,也就是优先取前一个参数,前一个取不到的话,再取第二个参数,然后将address封装成InetSocketAddress,得到isa,将nnId->InetSocketAddress的对应关系放入到Map中,最终返回给上层应用。
至此,从配置信息conf中获取nameserviceid->{namenode名称->InetSocketAddress}的映射集合newAddressMap就分析完了。下面,我们再看下初始化的重点:调用doRefreshNamenodes()方法执行集合newAddressMap中的刷新。代码如下:
private void doRefreshNamenodes(
Map<String, Map<String, InetSocketAddress>> addrMap) throws IOException {
// 确保当前线程在refreshNamenodesLock上拥有互斥锁
assert Thread.holdsLock(refreshNamenodesLock);
// 定义三个集合,分别为待刷新的toRefresh、待添加的toAdd和待移除的toRemove
Set<String> toRefresh = Sets.newLinkedHashSet();
Set<String> toAdd = Sets.newLinkedHashSet();
Set<String> toRemove;
// 使用synchronized关键字在当前对象上获得互斥锁
synchronized (this) {
// Step 1. For each of the new nameservices, figure out whether
// it's an update of the set of NNs for an existing NS,
// or an entirely new nameservice.
// 第一步,针对所有新的nameservices中的每个nameservice,
// 确认它是一个已存在nameservice中的被更新了的NN集合,还是完全的一个新的nameservice
// 判断的依据就是对应nameserviceId是否在bpByNameserviceId结合中存在
// 循环addrMap,放入待添加或者待刷新集合
for (String nameserviceId : addrMap.keySet()) {
// 如果bpByNameserviceId结合中存在nameserviceId,加入待刷新集合toRefresh,否则加入到待添加集合toAdd
if (bpByNameserviceId.containsKey(nameserviceId)) {
toRefresh.add(nameserviceId);
} else {
toAdd.add(nameserviceId);
}
}
// Step 2. Any nameservices we currently have but are no longer present
// need to be removed.
// 第二步,删除所有我们目前拥有但是现在不再需要的,也就是bpByNameserviceId中存在,而配置信息addrMap中没有的
// 加入到待删除集合toRemove
toRemove = Sets.newHashSet(Sets.difference(
bpByNameserviceId.keySet(), addrMap.keySet()));
// 验证,待刷新集合toRefresh的大小与待添加集合toAdd的大小必须等于配置信息addrMap中的大小
assert toRefresh.size() + toAdd.size() ==
addrMap.size() :
"toAdd: " + Joiner.on(",").useForNull("<default>").join(toAdd) +
" toRemove: " + Joiner.on(",").useForNull("<default>").join(toRemove) +
" toRefresh: " + Joiner.on(",").useForNull("<default>").join(toRefresh);
// Step 3. Start new nameservices
// 第三步,启动所有新的nameservices
if (!toAdd.isEmpty()) {// 待添加集合toAdd不为空
LOG.info("Starting BPOfferServices for nameservices: " +
Joiner.on(",").useForNull("<default>").join(toAdd));
// 针对待添加集合toAdd中的每个nameserviceId,做以下处理:
for (String nsToAdd : toAdd) {
// 从addrMap中根据nameserviceId获取对应Socket地址InetSocketAddress,创建集合addrs
ArrayList<InetSocketAddress> addrs =
Lists.newArrayList(addrMap.get(nsToAdd).values());
// 根据addrs创建BPOfferService
BPOfferService bpos = createBPOS(addrs);
// 将nameserviceId->BPOfferService的对应关系添加到集合bpByNameserviceId中
bpByNameserviceId.put(nsToAdd, bpos);
// 将BPOfferService添加到集合offerServices中
offerServices.add(bpos);
}
}
// 启动所有BPOfferService,实际上是通过调用它的start()方法启动
startAll();
}
// Step 4. Shut down old nameservices. This happens outside
// of the synchronized(this) lock since they need to call
// back to .remove() from another thread
// 第4步,停止所有旧的nameservices。这个是发生在synchronized代码块外面的,是因为它们需要回调另外一个线程的remove()方法
if (!toRemove.isEmpty()) {
LOG.info("Stopping BPOfferServices for nameservices: " +
Joiner.on(",").useForNull("<default>").join(toRemove));
// 遍历待删除集合toRemove中的每个nameserviceId
for (String nsToRemove : toRemove) {
// 根据nameserviceId从集合bpByNameserviceId中获取BPOfferService
BPOfferService bpos = bpByNameserviceId.get(nsToRemove);
// 调用BPOfferService的stop()和join()方法停止服务
bpos.stop();
bpos.join();
// they will call remove on their own
// 它们会调用本身的remove()方法
}
}
// Step 5. Update nameservices whose NN list has changed
// 第5步,更新NN列表已变化的nameservices
if (!toRefresh.isEmpty()) {// 待更新集合toRefresh不为空时
LOG.info("Refreshing list of NNs for nameservices: " +
Joiner.on(",").useForNull("<default>").join(toRefresh));
// 遍历待更新集合toRefresh中的每个nameserviceId
for (String nsToRefresh : toRefresh) {
// 根据nameserviceId从集合bpByNameserviceId中取出对应的BPOfferService
BPOfferService bpos = bpByNameserviceId.get(nsToRefresh);
// 根据BPOfferService从配置信息addrMap中取出NN的Socket地址InetSocketAddress,形成列表addrs
ArrayList<InetSocketAddress> addrs =
Lists.newArrayList(addrMap.get(nsToRefresh).values());
// 调用BPOfferService的refreshNNList()方法根据addrs刷新NN列表
bpos.refreshNNList(addrs);
}
}
}
整个doRefreshNamenodes()方法比较长,但是主体逻辑很清晰,主要分五大步骤,分别如下:
1、第一步,针对nameserviceid->{namenode名称->InetSocketAddress}的映射集合newAddressMap中每个nameserviceid,确认它是一个完全新加的nameservice,还是一个其NameNode列表被更新的nameservice,分别加入待添加toAdd和待刷新toRefresh集合;
2、第二步,针对newAddressMap中没有,而目前DataNode内存bpByNameserviceId中存在的nameservice,需要删除,添加到待删除toRemove集合;
3、第三步,处理待添加toAdd集合,启动所有新的nameservices:根据addrs创建BPOfferService,维护BPOfferService相关映射集合,然后启动所有的BPOfferService;
4、第四步,处理待删除toRemove集合,停止所有旧的nameservices;
5、第五步,处理待刷新toRefresh集合,更新NN列表已变化的nameservices。
对,就是这么简单,将需要处理的nameservice分别加入到不同的集合,然后按照添加、删除、更新的顺序针对处理类型相同的nameservice一并处理即可。
接下来,我们分别研究下每一步的细节:
1、第一步,针对nameserviceid->{namenode名称->InetSocketAddress}的映射集合newAddressMap中每个nameserviceid,确认它是一个完全新加的nameservice,还是一个其NameNode列表被更新的nameservice,分别加入待添加toAdd和待刷新toRefresh集合;
它的处理思路是,循环addrMap中每个nameserviceid,放入待添加toAdd或者待刷新toRefresh集合;如果bpByNameserviceId结合中存在nameserviceId,加入待刷新集合toRefresh,否则加入到待添加集合toAdd。
2、第二步,针对newAddressMap中没有,而目前DataNode内存bpByNameserviceId中存在的nameservice,需要删除,添加到待删除toRemove集合;
它的处理思路是:利用Sets的difference()方法,比较bpByNameserviceId和addrMap两个集合的keySet,找出bpByNameserviceId中存在,但是addrMap中不存在的nameserviceid,生成待删除集合toRemove。
3、第三步,处理待添加toAdd集合,启动所有新的nameservices:根据addrs创建BPOfferService,维护BPOfferService相关映射集合,然后启动所有的BPOfferService;
这一步针对待添加集合toAdd中的每个nameserviceId,做以下处理:
3.1、从addrMap中根据nameserviceId获取对应Socket地址InetSocketAddress,创建集合addrs;
3.2、根据addrs创建BPOfferService实例bpos;
3.3、将nameserviceId->BPOfferService的对应关系添加到集合bpByNameserviceId中
3.4、将BPOfferService添加到集合offerServices中;
最后,调用startAll()方法启动所有BPOfferService,实际上是通过调用它的start()方法启动。
其中,创建BPOfferService实例bpos时,BPOfferService的构造方法如下:
// 构造方法
BPOfferService(List<InetSocketAddress> nnAddrs, DataNode dn) {
Preconditions.checkArgument(!nnAddrs.isEmpty(),
"Must pass at least one NN.");
this.dn = dn;
// 遍历nnAddrs,为每个namenode添加一个构造的BPServiceActor线城实例,加入到bpServices列表
for (InetSocketAddress addr : nnAddrs) {
this.bpServices.add(new BPServiceActor(addr, this));
}
}
它实际上是遍历nnAddrs,为每个namenode添加一个构造的BPServiceActor线城实例,加入到bpServices列表。
而调用startAll()方法启动所有BPOfferService时,执行的代码如下:
synchronized void startAll() throws IOException {
try {
UserGroupInformation.getLoginUser().doAs(
new PrivilegedExceptionAction<Object>() {
@Override
public Object run() throws Exception {
// 遍历offerServices,启动所有的BPOfferService
for (BPOfferService bpos : offerServices) {
bpos.start();
}
return null;
}
});
} catch (InterruptedException ex) {
IOException ioe = new IOException();
ioe.initCause(ex.getCause());
throw ioe;
}
}
它会遍历offerServices,启动所有的BPOfferService,而BPOfferService的启动,实际上就是将其所持有的每个NameNode对应的BPServiceActor线程启动,代码如下:
//This must be called only by blockPoolManager
void start() {
for (BPServiceActor actor : bpServices) {
actor.start();
}
}
4、第四步,处理待删除toRemove集合,停止所有旧的nameservices;
在这一步中,遍历待删除集合toRemove中的每个nameserviceId:
4.1、根据nameserviceId从集合bpByNameserviceId中获取BPOfferService;
4.2、调用BPOfferService的stop()和join()方法停止服务,它们会调用本身的remove()方法;
而BPOfferService的stop()和join()方法,则是依次调用BPOfferService所包含的所有BPServiceActor线程的stop()和join()方法,代码如下:
//This must be called only by blockPoolManager.
void stop() {
for (BPServiceActor actor : bpServices) {
actor.stop();
}
}
//This must be called only by blockPoolManager
void join() {
for (BPServiceActor actor : bpServices) {
actor.join();
}
}
5、第五步,处理待刷新toRefresh集合,更新NN列表已变化的nameservices;
在最后一步中,遍历待更新集合toRefresh中的每个nameserviceId:
5.1、根据nameserviceId从集合bpByNameserviceId中取出对应的BPOfferService;
5.2、根据BPOfferService从配置信息addrMap中取出NN的Socket地址InetSocketAddress,形成列表addrs;
5.3、调用BPOfferService的refreshNNList()方法根据addrs刷新NN列表。
好了,HDFS心跳相关数据结构的初始化已分析完毕,至此,涉及到每个命名空间服务中每个NameNode相关的BPServiceActor线程均已启动,它是真正干活的苦力,真正的底层劳动人民啊!至于它是怎么运行来完成HDFS心跳的,我们下一节再分析吧!