降采样:


以对过采样的信号作抽取,即是所谓的“降采样”。 在现场中采样往往受具体条件的限止,或者不存在300HZ的采样率,或调试非常困难等等。若 R>>1,则Rfs/2就远大于音频信号的最高频率fm,这使得量化噪声大部分分布在音频频带之外的高频区域 ,而分布在音频频带之内的量化噪声就会相应的减少,于是,通过低通滤波器滤掉fm以上的噪声分量,就 可以提高系统的信噪比。


滤波器后使信号的最高频率为16HZ,这时采样频率就可以用到32HZ(满足尼奎斯特采样定理,最低为32HZ ,比32HZ高都可以)。从2048HZ降到32HZ,便是每隔64个样本取1个样本。这种把采样频率降下来,就是 降采样downsample)。这样做的好处是减少数据样点,也就是减少运算时间,在实时处理时常采用的方 法。



过采样:


过采样定义:就是用高于nyquist频率进行采样,好处是可以提高信噪比,缺点是处理数据量大。


过采样是使用远大于奈奎斯特采样频率的频率对输入信号进行采样。设数字音频系统原来的采样频率为fs,通常为44.1kHz或48kHz。若将采样频率提高到R×fs,R称为过采样比率,并且R>1。在这种采样的数字信号中,由于量化比特数没有改变,故总的量化噪声功率也不变,但这时量化噪声的频谱分布发生了变化,即将原来均匀分布在0 ~ fs/2频带内的量化噪声分散到了0 ~ Rfs/2的频带上。若R>>1,则Rfs/2就远大于音频信号的最高频率fm,这使得量化噪声大部分分布在音频频带之外的高频区域,而分布在音频频带之内的量化噪声就会相应的减少,于是,通过低通滤波器滤掉fm以上的噪声分量,就可以提高系统的信噪比。


直观上讲:采样后的信号是原来的信号 频域延拓叠加,限带信号通常是离中心频率越远,幅度 越低,因此采样率越高混叠的情况越小.


过采样目的:就是要改变的噪声的分布,减少噪声在有用信号的带宽内,然后在通过低通滤波器 滤除掉噪声,达到较好的信噪比,一般用在sigma-deltaDAC 或者ADC里面。


过采样作用:能将噪声扩展到更高的频率,通过低通滤波器后,可使得基带内的SNR提高


过采样意义:


1.提高时域分辨力从而获得更好的时域波形;


2.提高滤波器的处理增益,当在频域上滤波时,滤波器的设计变得更容易;


3.提高信噪比,匹配滤波时更好地收集波形能量;


4.抑制镜像,使上变频更容易,降低对后级DA转换的保持时间要求;


5.需要fractional sampling timing时是必需的.


度(如16bit 18bit .....)的情况。DA过采样可以用线性插值实现。



欠采样:


信号完整地保留了原始信号中的信息,一般取2.56-4倍的信号最大频率;采样定理又称奈奎斯特定理。 欠采样是在测试设备带宽能力不足的情况下,采取的一种手段,相当于增大了测试设备的带宽, 从而达到可以采样更高频率信号的能力。


不到信号中最大频率的两倍,则会出现一种称为“混叠”的现象。当采样时钟频率足够低时,则导致一种 称为“欠采样”的混叠。 一个带宽为fb的模拟信号,采样速率必须为 fs > 2fb,才能避免信息的损失。实际所需最小采 样频率是信号带宽的函数,而不仅取决于它的最大频率成份。通常来说,采样频率至少必须是信号带宽的 两倍,并且被采样的信号不能是 fs/2 的整数倍,以防止混叠成份的相互重叠。




子采样:


信号和色差信号进行采样,另一种是对亮度信号和色差信号分别采用不同的采用频率进行采样。如果对色 差信号使用的采样频率比对亮度信号使用的采样频率低,这种采样就称为图像子采样(subsampling)。 子采样的基本根据是人的视觉系统所具有的两条特性,一是人眼对色度信号的敏感程度比对亮度 信号的敏感程度低,利用这个特性可以把图像中表达颜色的信号去掉一些而使人不察觉;二是人眼对图像 细节的分辨能力有一定的限度,利用这个特性可以把图像中的高频信号去掉而使人不易察觉。子采样就是 利用这个特性来达到压缩彩色电视信号。



下采样:


定义:对于一个样值序列间隔几个样值取样一次,这样得到新序列就是原序列的下采样。


信号而言,还是要满足采样定理才行,否则这样的下采样会引起信号成分混叠。


下采样就是抽取,是多速率信号处理中的基本内容之一。在不同应用场合,下采样可以带来许多相应 的好处。就以在最常见的数字接收机中为例,最后要得到的基带信号的采样率等于符号速率,这个速率是 比较低的,但通常的做法并不是直接以这个采样率对模拟信号进行采样,而是采用高的多(几十甚至上百 倍)的采样率,这样可以提高采样得到的信号的信噪比,然后再用数字的方法对信号进行多级的滤波和抽 取,直到最后信号的采样率与符号速率相等。这样处理可以获得的信噪比增益为最初采样率与最后输出信 号采样率之比。


采样率越高,滤波器带宽就越大,对于宽带噪声而言(噪声带宽高于最高的采样率), 通过的噪声功率就越高(噪声功率即功率谱密度乘上带宽,也即是每采样值中噪声分量的平方取均值 。)


信号功率在采样前后始终是没有变化的(信号功率即是每采样值中信号分量的平方取均值)。


为最初采样率与最后输出信号采样率之比”的这样结论可能是没有的。 或者说信噪功率比增益提高没有这么多。



上采样:


用下,转换成时间、幅值上离散的信号。所以采样又称为波形的离散化过程。 普通的奈奎斯特采样定理 的前提是频率受限于(0,f)的带限信号。


通 常采样指的是下采样,也就是对信号的抽取。其实,上采样和下采样都是对数字信号进行重采,重 采的采样率与原来获得该数字信号(比如从模拟信号采样而来)的采样率比较,大于原信号的称为上采样 ,小于的则称为下采样。上采样的实质也就是内插或插值。


频分多路复用中的应用是一个很好的例子。如果这些序列原先是以奈奎斯特频率对连续时间信号取样得到 的,那么在进行频分多路利用之前必须对它们进行上采样。


样;


2、欠采样就是小于奈奎斯特采样率,应该就指带通采样吧;


样而来)的采样率比较,大于上采样,小于下采样。


上采样和下采样分别就是内插和抽取。