flink中维表Join
需求如下:
一个主流中数据是用户信息,字段包括用户姓名、城市id;
维表是城市数据,字段包括城市ID、城市名称。
要求用户表与城市表关联,输出为:用户名称、城市ID、城市名称。
(1)预加载维表信息
通过定义一个类实现RichMapFunction,在open()中读取维表数据加载到内存中,在probe流map()方法中与维表数据进行关联。
RichMapFunction中open方法里加载维表数据到内存的方式特点如下:
+ 优点:实现简单.
+ 缺点:因为数据存于内存,所以只适合小数据量并且维表数据更新频率不高的情况下。虽然可以在open中定义一个定时器定时更新维表,但是还是存在维表更新不及时的情况。
代码实现:
public class _01_DimJoin {
public static void main(String[] args) throws Exception {
// 获取的执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
// 获取主流数据
DataStreamSource<String> sourceStream = env.socketTextStream("hadoop01", 9999);
// 原始数据的格式为user,1000(用户姓名、城市id)
SingleOutputStreamOperator<Tuple2<String, Integer>> mapStream = sourceStream.map(new MapFunction<String, Tuple2<String, Integer>>() {
@Override
public Tuple2<String, Integer> map(String line) throws Exception {
String[] arr = line.split(",");
return Tuple2.of(arr[0], Integer.valueOf(arr[1]));
}
});
// 预加载维表
SingleOutputStreamOperator<Tuple3<String, Integer, String>> resStream = mapStream.map(new _01_MyMapFunction());
// 打印数据
resStream.print();
env.execute("_01_DimJoin");
}
}
package com.yyds.flink.functions;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.configuration.Configuration;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;
/**
* 预加载维表方式 与 主流数据进行join
*/
public class _01_MyMapFunction extends RichMapFunction<Tuple2<String,Integer>, Tuple3<String,Integer,String>> {
//定义一个变量,用于保存维表数据在内存
Map<Integer, String> dim;
@Override
public void open(Configuration parameters) throws Exception {
//在open方法中读取维表数据,可以从数据库中读取、文件中读取、接口中读取等等。
dim = new HashMap<>();
dim.put(1001,"北京");
dim.put(1002,"上海");
dim.put(1003,"广州");
dim.put(1004,"深圳");
// open中可以定时更新维表
// 创建线程池
ScheduledExecutorService executors = Executors.newSingleThreadScheduledExecutor();
// 每隔5 min 更新一次
executors.scheduleAtFixedRate(new Runnable() {
@Override
public void run() {
reload();
}
},5,5, TimeUnit.MINUTES);
}
// 加载
private void reload() {
dim.put(1004,"深圳_" + System.currentTimeMillis());
}
@Override
public Tuple3<String, Integer, String> map(Tuple2<String, Integer> tp2) throws Exception {
// 在map 方法中进行主流 和 维表的关联
String cityName = "";
if(dim.containsKey(tp2.f1)){
cityName = dim.get(tp2.f1);
}
return new Tuple3<>(tp2.f0,tp2.f1,cityName);
}
}
(2)热存储维表
这种方式是将维表数据存储在Redis、HBase、MySQL等外部存储中,实时流在关联维表数据的时候实时去外部存储中查询,这种方式特点如下:
- 优点:维度数据量不受内存限制,可以存储很大的数据量。
- 缺点:因为维表数据在外部存储中,读取速度受制于外部存储的读取速度;另外维表的同步也有延迟。
1) 使用cache来减轻访问压力
可以使用缓存来存储一部分常访问的维表数据,以减少访问外部系统的次数,比如使用guava Cache。
代码实现:
public class _02_DimJoin {
public static void main(String[] args) throws Exception{
// 获取执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
DataStreamSource<String> streamSource = env.socketTextStream("hadoop01", 9999);
// 原始数据的格式为user,1000(用户姓名、城市id)
SingleOutputStreamOperator<Tuple2<String, Integer>> mapStream = streamSource.map(new MapFunction<String, Tuple2<String, Integer>>() {
@Override
public Tuple2<String, Integer> map(String line) throws Exception {
String[] arr = line.split(",");
return Tuple2.of(arr[0], Integer.valueOf(arr[1]));
}
});
// 预加载维表(使用缓存cache)
SingleOutputStreamOperator<Tuple3<String, Integer, String>> resStream = mapStream.map(new _02_MyMapFunction());
// 打印数据
resStream.print();
env.execute("_02_DimJoin");
}
}
/**
* 热存储维表: 使用cache来减轻访问压力
*/
public class _02_MyMapFunction extends RichMapFunction<Tuple2<String,Integer>, Tuple3<String,Integer,String>> {
LoadingCache<Integer,String> dim;
private String readFromHbase(Integer cityId) {
//读取hbase
//这里写死,模拟从hbase读取数据
Map<Integer, String> temp = new HashMap<>();
temp.put(1001,"北京");
temp.put(1002,"上海");
temp.put(1003,"广州");
temp.put(1004,"深圳");
String cityName = "";
if (temp.containsKey(cityId)) {
cityName = temp.get(cityId);
}
return cityName;
}
@Override
public void open(Configuration parameters) throws Exception {
// 使用google LoadingCache进行缓存
dim = CacheBuilder.newBuilder()
// 最多缓存的个数,超过了就根据最近最少使用的算法来移除缓存
.maximumSize(1000)
// 更新后的指定时间后回收
.expireAfterWrite(10,TimeUnit.MINUTES)
// 指定移除通知
.removalListener(new RemovalListener<Integer, String>() {
@Override
public void onRemoval(RemovalNotification<Integer, String> notification) {
System.out.println(notification.getKey() + "被移除了,值为:" + notification.getValue());
}
}).build(
// 指定加载缓存的逻辑
new CacheLoader<Integer, String>() {
@Override
public String load(Integer cityId) throws Exception {
String cityName = readFromHbase(cityId);
return cityName;
}
}
);
System.out.println("open方法中:" + dim.asMap().toString());
}
@Override
public Tuple3<String, Integer, String> map(Tuple2<String, Integer> tp2) throws Exception {
System.out.println("map方法中:" + dim.asMap().toString());
// 主流 和 维表进行关联
String cityName = "";
if(dim.get(tp2.f1) != null){
cityName = dim.get(tp2.f1);
}
return new Tuple3<>(tp2.f0,tp2.f1,cityName);
}
}
(2) 使用异步IO
Flink与外部存储系统进行读写操作的时候可以使用同步方式,也就是发送一个请求后等待外部系统响应,然后再发送第二个读写请求,
这样的方式吞吐量比较低,可以用提高并行度的方式来提高吞吐量,但是并行度多了也就导致了进程数量多了,占用了大量的资源。
Flink中可以使用异步IO来读写外部系统,这要求外部系统客户端支持异步IO,不过目前很多系统都支持异步IO客户端。但是如果使用异步就要涉及到三个问题:
- 超时:如果查询超时那么就认为是读写失败,需要按失败处理;
- 并发数量:如果并发数量太多,就要触发Flink的反压机制来抑制上游的写入;
- 返回顺序错乱:顺序错乱了要根据实际情况来处理,Flink支持两种方式:允许乱序、保证顺序。
public class _03_DimJoin {
public static void main(String[] args) throws Exception{
// 获取执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStreamSource<String> streamSource = env.socketTextStream("hadoop01", 9999);
// 原始数据的格式为user,1000(用户姓名、城市id)
SingleOutputStreamOperator<Tuple2<String, Integer>> mapStream = streamSource.map(new MapFunction<String, Tuple2<String, Integer>>() {
@Override
public Tuple2<String, Integer> map(String line) throws Exception {
String[] arr = line.split(",");
return Tuple2.of(arr[0], Integer.valueOf(arr[1]));
}
});
// 预加载维表(使用异步IO)
// 保证顺序:异步返回的结果保证顺序
SingleOutputStreamOperator<Tuple3<String, Integer, String>> resStream = AsyncDataStream.orderedWait(
mapStream,
new _03_MyRichAsyncFunction(),
1000L, // 超时时间为1S
TimeUnit.MILLISECONDS,
2
).setParallelism(1);;
SingleOutputStreamOperator<Tuple3<String,Integer, String>> unorderedResult = AsyncDataStream
//允许乱序:异步返回的结果允许乱序,超时时间1秒,最大容量2,超出容量触发反压
.unorderedWait(mapStream, new _03_MyRichAsyncFunction(), 1000L, TimeUnit.MILLISECONDS, 2)
.setParallelism(1);
// 打印数据
resStream.print();
env.execute("_02_DimJoin");
}
}
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.async.ResultFuture;
import org.apache.flink.streaming.api.functions.async.RichAsyncFunction;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.util.ArrayList;
import java.util.List;
/**
* 热存储维表—使用异步IO(从mysql中读取数据)
*/
public class _03_MyRichAsyncFunction extends RichAsyncFunction<Tuple2<String, Integer>, Tuple3<String, Integer, String>> {
// 链接
private static String jdbcUrl = "jdbc:mysql://localhost:3306/test?useUnicode=true&characterEncoding=utf-8&useSSL=false";
private static String username = "root";
private static String password = "zsd123456";
private static String driverName = "com.mysql.jdbc.Driver";
java.sql.Connection conn;
PreparedStatement ps;
// 从mysql中读取数据
@Override
public void open(Configuration parameters) throws Exception {
Class.forName(driverName);
conn = DriverManager.getConnection(jdbcUrl, username, password);
ps = conn.prepareStatement("select city_name from city_info where id = ?");
}
// 异步方法
@Override
public void asyncInvoke(Tuple2<String, Integer> tp2, ResultFuture<Tuple3<String, Integer, String>> resultFuture) throws Exception {
ps.setInt(1,tp2.f1);
ResultSet rs = this.ps.executeQuery();
String cityName = "";
if(rs.next()){
cityName = rs.getString(1);
}
List list = new ArrayList<Tuple3<String, Integer, String>>();
list.add(new Tuple3<>(tp2.f0,tp2.f1,cityName));
resultFuture.complete(list);
}
// 超时处理
@Override
public void timeout(Tuple2<String, Integer> tp2, ResultFuture<Tuple3<String, Integer, String>> resultFuture) throws Exception {
List list = new ArrayList<Tuple2<Integer, String>>();
list.add(new Tuple3<>(tp2.f0,tp2.f1, ""));
resultFuture.complete(list);
}
@Override
public void close() throws Exception {
// 关闭连接
conn.close();
}
}
(3)广播
利用Flink的Broadcast State将维度数据流广播到下游做join操作。
- 优点:维度数据变更后可以即时更新到结果中。
- 缺点:数据保存在内存中,支持的维度数据量比较小。
public class _04_BroadCastDimJoin {
public static void main(String[] args) throws Exception {
// 获取执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStreamSource<String> streamSource = env.socketTextStream("hadoop01", 9999);
// 原始数据的格式为user,1000(用户姓名、城市id)
SingleOutputStreamOperator<Tuple2<String, Integer>> mainStream = streamSource.map(new MapFunction<String, Tuple2<String, Integer>>() {
@Override
public Tuple2<String, Integer> map(String line) throws Exception {
String[] arr = line.split(",");
return Tuple2.of(arr[0], Integer.valueOf(arr[1]));
}
});
//定义城市流(维度数据流)
SingleOutputStreamOperator<Tuple2<Integer, String>> cityStream = env.socketTextStream("hadoop01", 8888, "\n")
.map(p -> {
//输入格式为:城市ID,城市名称
String[] list = p.split(",");
return new Tuple2<Integer, String>(Integer.valueOf(list[0]), list[1]);
}).returns(new TypeHint<Tuple2<Integer, String>>() {
});
// 将城市流定义为广播流
MapStateDescriptor<Integer, String> broadCastDes = new MapStateDescriptor<Integer, String>("broad",Integer.class,String.class);
BroadcastStream<Tuple2<Integer, String>> broadcastStream = cityStream.broadcast(broadCastDes);
// 主流 和 广播流 进行连接
SingleOutputStreamOperator<Tuple3<String, Integer, String>> resStream = mainStream.connect(broadcastStream)
.process(new BroadcastProcessFunction<Tuple2<String, Integer>, Tuple2<Integer, String>, Tuple3<String, Integer, String>>() {
MapStateDescriptor<Integer, String> broadCastDes = new MapStateDescriptor<>("broad", Integer.class, String.class);
@Override
public void processBroadcastElement(Tuple2<Integer, String> value, Context context, Collector<Tuple3<String, Integer, String>> collector) throws Exception {
System.out.println("收到广播流: " + value);
context.getBroadcastState(broadCastDes).put(value.f0, value.f1);
}
@Override
public void processElement(Tuple2<String, Integer> value, ReadOnlyContext readOnlyContext, Collector<Tuple3<String, Integer, String>> collector) throws Exception {
// 处理非广播流,关联维度
ReadOnlyBroadcastState<Integer, String> broadcastState = readOnlyContext.getBroadcastState(broadCastDes);
String cityName = "";
if (broadcastState.contains(value.f1)) {
cityName = broadcastState.get(value.f1);
}
collector.collect(new Tuple3<>(value.f0, value.f1, cityName));
}
});
resStream.print();
env.execute("_04_BroadCastDimJoin");
}
}
(4) Lookup join(flinksql 维表join)