WebRuntimeMonitor
.GET("/jobs/:jobid/vertices/:vertexid/metrics", handler(new JobVertexMetricsHandler(metricFetcher)))
.GET("/jobs/:jobid/metrics", handler(new JobMetricsHandler(metricFetcher)))
.GET("/taskmanagers/:" + TaskManagersHandler.TASK_MANAGER_ID_KEY + "/metrics", handler(new TaskManagerMetricsHandler(metricFetcher)))
.GET("/jobmanager/metrics", handler(new JobManagerMetricsHandler(metricFetcher)))
JobVertexMetricsHandler
AbstractMetricsHandler
MetricFetcher
核心就是fetchMetrics函数,会从JobManager获取数据,
private void fetchMetrics() {
try {
Option<scala.Tuple2<ActorGateway, Integer>> jobManagerGatewayAndWebPort = retriever.getJobManagerGatewayAndWebPort();
if (jobManagerGatewayAndWebPort.isDefined()) {
ActorGateway jobManager = jobManagerGatewayAndWebPort.get()._1(); //得到JobManager的ActorGateway
/**
* Remove all metrics that belong to a job that is not running and no longer archived.
*/
Future<Object> jobDetailsFuture = jobManager.ask(new RequestJobDetails(true, true), timeout); //生成request获取job状态
jobDetailsFuture
.onSuccess(new OnSuccess<Object>() {
@Override
public void onSuccess(Object result) throws Throwable {
MultipleJobsDetails details = (MultipleJobsDetails) result;
ArrayList<String> toRetain = new ArrayList<>();
for (JobDetails job : details.getRunningJobs()) {
toRetain.add(job.getJobId().toString());
}
for (JobDetails job : details.getFinishedJobs()) {
toRetain.add(job.getJobId().toString());
}
synchronized (metrics) {
metrics.jobs.keySet().retainAll(toRetain); //只保留Runing和Finished的job,即不正常的都删掉
}
}
}, ctx);
logErrorOnFailure(jobDetailsFuture, "Fetching of JobDetails failed.");
String jobManagerPath = jobManager.path();
String queryServicePath = jobManagerPath.substring(0, jobManagerPath.lastIndexOf('/') + 1) + MetricQueryService.METRIC_QUERY_SERVICE_NAME;
ActorRef jobManagerQueryService = actorSystem.actorFor(queryServicePath);
queryMetrics(jobManagerQueryService); //查询jobManager的Metrics
/**
* We first request the list of all registered task managers from the job manager, and then
* request the respective metric dump from each task manager.
*
* All stored metrics that do not belong to a registered task manager will be removed.
*/
Future<Object> registeredTaskManagersFuture = jobManager.ask(JobManagerMessages.getRequestRegisteredTaskManagers(), timeout); //查询所有taskManager
registeredTaskManagersFuture
.onSuccess(new OnSuccess<Object>() {
@Override
public void onSuccess(Object result) throws Throwable {
Iterable<Instance> taskManagers = ((JobManagerMessages.RegisteredTaskManagers) result).asJavaIterable();
List<String> activeTaskManagers = new ArrayList<>();
for (Instance taskManager : taskManagers) { //遍历taskManager
activeTaskManagers.add(taskManager.getId().toString());
String taskManagerPath = taskManager.getTaskManagerGateway().getAddress();
String queryServicePath = taskManagerPath.substring(0, taskManagerPath.lastIndexOf('/') + 1) + MetricQueryService.METRIC_QUERY_SERVICE_NAME + "_" + taskManager.getTaskManagerID().getResourceIdString();
ActorRef taskManagerQueryService = actorSystem.actorFor(queryServicePath);
queryMetrics(taskManagerQueryService); //查询每个taskMananger的metrics
}
synchronized (metrics) { // remove all metrics belonging to unregistered task managers
metrics.taskManagers.keySet().retainAll(activeTaskManagers); //删除所有的未注册的TaskManager
}
}
}, ctx);
logErrorOnFailure(registeredTaskManagersFuture, "Fetchin list of registered TaskManagers failed.");
}
} catch (Exception e) {
LOG.warn("Exception while fetching metrics.", e);
}
}
queryMetrics
/**
* Requests a metric dump from the given actor.
*
* @param actor ActorRef to request the dump from
*/
private void queryMetrics(ActorRef actor) {
Future<Object> metricQueryFuture = new BasicGateway(actor).ask(MetricQueryService.getCreateDump(), timeout); //获取metrics dump
metricQueryFuture
.onSuccess(new OnSuccess<Object>() {
@Override
public void onSuccess(Object result) throws Throwable {
addMetrics(result);
}
}, ctx);
logErrorOnFailure(metricQueryFuture, "Fetching metrics failed.");
}
private void addMetrics(Object result) throws IOException {
byte[] data = (byte[]) result;
List<MetricDump> dumpedMetrics = deserializer.deserialize(data);
for (MetricDump metric : dumpedMetrics) {
metrics.add(metric); //把metrics dump加入metrics store
}
}
MetricStore
用嵌套的hashmap来存储metrics,瞬时值
final JobManagerMetricStore jobManager = new JobManagerMetricStore();
final Map<String, TaskManagerMetricStore> taskManagers = new HashMap<>();
final Map<String, JobMetricStore> jobs = new HashMap<>();
public static class JobManagerMetricStore extends ComponentMetricStore {
}
private static abstract class ComponentMetricStore {
public final Map<String, String> metrics = new HashMap<>(); //store就是一个map
public String getMetric(String name, String defaultValue) {
String value = this.metrics.get(name);
return value != null
? value
: defaultValue;
}
}
MetricQueryService
public class MetricQueryService extends UntypedActor {
private static final Logger LOG = LoggerFactory.getLogger(MetricQueryService.class);
public static final String METRIC_QUERY_SERVICE_NAME = "MetricQueryService";
private static final CharacterFilter FILTER = new CharacterFilter() {
@Override
public String filterCharacters(String input) {
return replaceInvalidChars(input);
}
};
private final MetricDumpSerializer serializer = new MetricDumpSerializer();
private final Map<Gauge<?>, Tuple2<QueryScopeInfo, String>> gauges = new HashMap<>();
private final Map<Counter, Tuple2<QueryScopeInfo, String>> counters = new HashMap<>();
private final Map<Histogram, Tuple2<QueryScopeInfo, String>> histograms = new HashMap<>();
private final Map<Meter, Tuple2<QueryScopeInfo, String>> meters = new HashMap<>();
收到CreateDump请求,
} else if (message instanceof CreateDump) {
byte[] dump = serializer.serialize(counters, gauges, histograms, meters);
getSender().tell(dump, getSelf());
Start
/**
* Starts the MetricQueryService actor in the given actor system.
*
* @param actorSystem The actor system running the MetricQueryService
* @param resourceID resource ID to disambiguate the actor name
* @return actor reference to the MetricQueryService
*/
public static ActorRef startMetricQueryService(ActorSystem actorSystem, ResourceID resourceID) {
String actorName = resourceID == null
? METRIC_QUERY_SERVICE_NAME
: METRIC_QUERY_SERVICE_NAME + "_" + resourceID.getResourceIdString();
return actorSystem.actorOf(Props.create(MetricQueryService.class), actorName);
}
在MetricRegistry中把metrics注册到QueryService中,
if (queryService != null) {
MetricQueryService.notifyOfAddedMetric(queryService, metric, metricName, group);
}
采集点
numRecordsIn
StreamInputProcessor –> processInput
@SuppressWarnings("SynchronizationOnLocalVariableOrMethodParameter")
public boolean processInput(OneInputStreamOperator<IN, ?> streamOperator, final Object lock) throws Exception {
if (numRecordsIn == null) {
numRecordsIn = ((OperatorMetricGroup) streamOperator.getMetricGroup()).getIOMetricGroup().getNumRecordsInCounter();
}
//......
// now we can do the actual processing
StreamRecord<IN> record = recordOrMark.asRecord();
synchronized (lock) {
numRecordsIn.inc(); //执行processElement前加一
streamOperator.setKeyContextElement1(record);
streamOperator.processElement(record);
}
return true;
如果是chaining,
ChainingOutput
private static class ChainingOutput<T> implements Output<StreamRecord<T>> {
protected final OneInputStreamOperator<T, ?> operator;
protected final Counter numRecordsIn;
public ChainingOutput(OneInputStreamOperator<T, ?> operator) {
this.operator = operator;
this.numRecordsIn = ((OperatorMetricGroup) operator.getMetricGroup()).getIOMetricGroup().getNumRecordsInCounter(); //初始化
}
@Override
public void collect(StreamRecord<T> record) {
try {
numRecordsIn.inc(); //对于chain,在output时调用processElement
operator.setKeyContextElement1(record);
operator.processElement(record);
}
catch (Exception e) {
throw new ExceptionInChainedOperatorException(e);
}
}
numRecordsOut
在AbstractStreamOperator初始化时,
生成CountingOutput
@Override
public void setup(StreamTask<?, ?> containingTask, StreamConfig config, Output<StreamRecord<OUT>> output) {
this.container = containingTask;
this.config = config;
this.metrics = container.getEnvironment().getMetricGroup().addOperator(config.getOperatorName());
this.output = new CountingOutput(output, ((OperatorMetricGroup) this.metrics).getIOMetricGroup().getNumRecordsOutCounter()); //生成CountingOutput
这个output,
在processWatermark,processElement中会用于emit数据
output.emitWatermark(mark);
public class CountingOutput implements Output<StreamRecord<OUT>> {
private final Output<StreamRecord<OUT>> output;
private final Counter numRecordsOut;
public CountingOutput(Output<StreamRecord<OUT>> output, Counter counter) {
this.output = output;
this.numRecordsOut = counter;
}
@Override
public void emitWatermark(Watermark mark) {
output.emitWatermark(mark);
}
@Override
public void emitLatencyMarker(LatencyMarker latencyMarker) {
output.emitLatencyMarker(latencyMarker);
}
@Override
public void collect(StreamRecord<OUT> record) {
numRecordsOut.inc(); //发出的时候,inc numRecordsOut
output.collect(record);
}
@Override
public void close() {
output.close();
}
}
注意numRecordsOut和numRecordsIn,除了会统计operator级别的,还会统计task级别的,逻辑在
AbstractStreamOperator
public void setup(StreamTask<?, ?> containingTask, StreamConfig config, Output<StreamRecord<OUT>> output) {
this.container = containingTask;
this.config = config;
this.metrics = container.getEnvironment().getMetricGroup().addOperator(config.getOperatorName());
this.output = new CountingOutput(output, ((OperatorMetricGroup) this.metrics).getIOMetricGroup().getNumRecordsOutCounter());
if (config.isChainStart()) {
((OperatorMetricGroup) this.metrics).getIOMetricGroup().reuseInputMetricsForTask();
}
if (config.isChainEnd()) {
((OperatorMetricGroup) this.metrics).getIOMetricGroup().reuseOutputMetricsForTask();
}
OperatorIOMetricGroup
public void reuseInputMetricsForTask() {
TaskIOMetricGroup taskIO = parentMetricGroup.parent().getIOMetricGroup();
taskIO.reuseRecordsInputCounter(this.numRecordsIn);
}
public void reuseOutputMetricsForTask() {
TaskIOMetricGroup taskIO = parentMetricGroup.parent().getIOMetricGroup();
taskIO.reuseRecordsOutputCounter(this.numRecordsOut);
}
可以看到,会将ChainHead的numRecordsIn,set到task的TaskIOMetricGroup
而将ChainEnd的numRecordsOut,set到task的TaskIOMetricGroup
看起来很合理
numRecordInPerSecond,numRecordsOutPerSecond
在OperatorIOMetricGroup
public OperatorIOMetricGroup(OperatorMetricGroup parentMetricGroup) {
super(parentMetricGroup);
numRecordsIn = parentMetricGroup.counter(MetricNames.IO_NUM_RECORDS_IN);
numRecordsOut = parentMetricGroup.counter(MetricNames.IO_NUM_RECORDS_OUT);
numRecordsInRate = parentMetricGroup.meter(MetricNames.IO_NUM_RECORDS_IN_RATE, new MeterView(numRecordsIn, 60));
numRecordsOutRate = parentMetricGroup.meter(MetricNames.IO_NUM_RECORDS_OUT_RATE, new MeterView(numRecordsOut, 60));
}
可以看到numRecordsInRate和numRecordsOutRate,只是numRecordsIn和numRecordsOut的MeterView
public class MeterView implements Meter, View {
/** The underlying counter maintaining the count */
private final Counter counter;
/** The time-span over which the average is calculated */
private final int timeSpanInSeconds;
/** Circular array containing the history of values */
private final long[] values;
/** The index in the array for the current time */
private int time = 0;
/** The last rate we computed */
private double currentRate = 0;
public MeterView(Counter counter, int timeSpanInSeconds) {
this.counter = counter;
this.timeSpanInSeconds = timeSpanInSeconds - (timeSpanInSeconds % UPDATE_INTERVAL_SECONDS); //timeSpanInSeconds需要是UPDATE_INTERVAL_SECONDS(5)的倍数,
this.values = new long[this.timeSpanInSeconds / UPDATE_INTERVAL_SECONDS + 1]; //比如timeSpanInSeconds为60,那么就需要保存12个value
}
@Override
public void markEvent() {
this.counter.inc();
}
@Override
public void markEvent(long n) {
this.counter.inc(n);
}
@Override
public long getCount() {
return counter.getCount();
}
@Override
public double getRate() { //获取平均值
return currentRate;
}
@Override
public void update() { //会被以UPDATE_INTERVAL_SECONDS为间隔调用
time = (time + 1) % values.length;
values[time] = counter.getCount();
currentRate = ((double) (values[time] - values[(time + 1) % values.length]) / timeSpanInSeconds); //values保存了timeSpanInSeconds时间段的counter的变化过程,所以用最新的减最老的,再除以timeSpanInSeconds
}
}
这个实现真是tricky,不好的设计
在MetricRegistry中,会创建
ViewUpdater
public void register(Metric metric, String metricName, AbstractMetricGroup group) {
try {
if (reporters != null) {
for (int i = 0; i < reporters.size(); i++) {
MetricReporter reporter = reporters.get(i);
if (reporter != null) {
FrontMetricGroup front = new FrontMetricGroup<AbstractMetricGroup<?>>(i, group);
reporter.notifyOfAddedMetric(metric, metricName, front);
}
}
}
if (queryService != null) {
MetricQueryService.notifyOfAddedMetric(queryService, metric, metricName, group);
}
if (metric instanceof View) {
if (viewUpdater == null) {
viewUpdater = new ViewUpdater(executor);
}
viewUpdater.notifyOfAddedView((View) metric);
}
} catch (Exception e) {
LOG.error("Error while registering metric.", e);
}
}
并且在register metrics的时候,除了注册到reporter,MetricQueryService
如果是view的子类还要,注册到ViewUpdater
public ViewUpdater(ScheduledExecutorService executor) {
executor.scheduleWithFixedDelay(new ViewUpdaterTask(lock, toAdd, toRemove), 5, UPDATE_INTERVAL_SECONDS, TimeUnit.SECONDS);
}
ViewUpdater会定期执行ViewUpdaterTask,task中就会调用view的update
numBytesInLocal, numBytesInRemote
在RemoteInputChannel和LocalInputChannel中,
public LocalInputChannel(
SingleInputGate inputGate,
int channelIndex,
ResultPartitionID partitionId,
ResultPartitionManager partitionManager,
TaskEventDispatcher taskEventDispatcher,
int initialBackoff,
int maxBackoff,
TaskIOMetricGroup metrics) {
super(inputGate, channelIndex, partitionId, initialBackoff, maxBackoff, metrics.getNumBytesInLocalCounter()); //metrics.getNumBytesInLocalCounter()
public RemoteInputChannel(
SingleInputGate inputGate,
int channelIndex,
ResultPartitionID partitionId,
ConnectionID connectionId,
ConnectionManager connectionManager,
int initialBackOff,
int maxBackoff,
TaskIOMetricGroup metrics) {
super(inputGate, channelIndex, partitionId, initialBackOff, maxBackoff, metrics.getNumBytesInRemoteCounter()); // metrics.getNumBytesInRemoteCounter()
并且都会在
BufferAndAvailability getNextBuffer()
会调用,
numBytesIn.inc(next.getSize());
numBytesOut
RecordWriter
public class RecordWriter<T extends IOReadableWritable> {
private Counter numBytesOut = new SimpleCounter();
public void emit(T record) throws IOException, InterruptedException {
for (int targetChannel : channelSelector.selectChannels(record, numChannels)) {
sendToTarget(record, targetChannel);
}
}
private void sendToTarget(T record, int targetChannel) throws IOException, InterruptedException {
RecordSerializer<T> serializer = serializers[targetChannel];
synchronized (serializer) {
SerializationResult result = serializer.addRecord(record);
while (result.isFullBuffer()) {
Buffer buffer = serializer.getCurrentBuffer();
if (buffer != null) {
numBytesOut.inc(buffer.getSize()); //计数numBytesOut
writeAndClearBuffer(buffer, targetChannel, serializer);
// If this was a full record, we are done. Not breaking
// out of the loop at this point will lead to another
// buffer request before breaking out (that would not be
// a problem per se, but it can lead to stalls in the
// pipeline).
if (result.isFullRecord()) {
break;
}
} else {
buffer = targetPartition.getBufferProvider().requestBufferBlocking();
result = serializer.setNextBuffer(buffer);
}
}
}
}
RecordWriterOutput.collect –> StreamRecordWriter.emit –> RecordWriter.emit
inputQueueLength, outputQueueLength, inPoolUsage, outPoolUsage
TaskIOMetricGroup
/**
* Initialize Buffer Metrics for a task
*/
public void initializeBufferMetrics(Task task) {
final MetricGroup buffers = addGroup("buffers");
buffers.gauge("inputQueueLength", new InputBuffersGauge(task));
buffers.gauge("outputQueueLength", new OutputBuffersGauge(task));
buffers.gauge("inPoolUsage", new InputBufferPoolUsageGauge(task));
buffers.gauge("outPoolUsage", new OutputBufferPoolUsageGauge(task));
}
inputQueueLength
for (SingleInputGate inputGate : task.getAllInputGates()) {
totalBuffers += inputGate.getNumberOfQueuedBuffers();
}
inputGate.getNumberOfQueuedBuffers
for (InputChannel channel : inputChannels.values()) {
if (channel instanceof RemoteInputChannel) { // 只统计RemoteInputChannel
totalBuffers += ((RemoteInputChannel) channel).getNumberOfQueuedBuffers();
}
}
getNumberOfQueuedBuffers
/**
* The received buffers. Received buffers are enqueued by the network I/O thread and the queue
* is consumed by the receiving task thread.
*/
private final Queue<Buffer> receivedBuffers = new ArrayDeque<>();
public int getNumberOfQueuedBuffers() {
synchronized (receivedBuffers) {
return receivedBuffers.size();
}
}
outputQueueLength
for (ResultPartition producedPartition : task.getProducedPartitions()) {
totalBuffers += producedPartition.getNumberOfQueuedBuffers();
}
ResultPartition getNumberOfQueuedBuffers
for (ResultSubpartition subpartition : subpartitions) {
totalBuffers += subpartition.getNumberOfQueuedBuffers();
}
SpillableSubpartition getNumberOfQueuedBuffers
class SpillableSubpartition extends ResultSubpartition {
/** Buffers are kept in this queue as long as we weren't ask to release any. */
private final ArrayDeque<Buffer> buffers = new ArrayDeque<>();
@Override
public int getNumberOfQueuedBuffers() {
return buffers.size();
}
inputQueueLength, outputQueueLength
指标的含义是,inputchannel和resultparitition,持有的buffer个数,这些buffer被读完后会release,所以链路通畅的话,length应该会很小
inPoolUsage
int usedBuffers = 0;
int bufferPoolSize = 0;
for (SingleInputGate inputGate : task.getAllInputGates()) {
usedBuffers += inputGate.getBufferPool().bestEffortGetNumOfUsedBuffers();
bufferPoolSize += inputGate.getBufferPool().getNumBuffers();
}
if (bufferPoolSize != 0) {
return ((float) usedBuffers) / bufferPoolSize;
} else {
return 0.0f;
}
bestEffortGetNumOfUsedBuffers()
@Override
public int bestEffortGetNumOfUsedBuffers() {
return Math.max(0, numberOfRequestedMemorySegments - availableMemorySegments.size());
}
numberOfRequestedMemorySegments,从bufferpool申请多少
availableMemorySegments,可用的
所以相减就是使用多少
outPoolUsage
int usedBuffers = 0;
int bufferPoolSize = 0;
for (ResultPartition resultPartition : task.getProducedPartitions()) {
usedBuffers += resultPartition.getBufferPool().bestEffortGetNumOfUsedBuffers();
bufferPoolSize += resultPartition.getBufferPool().getNumBuffers();
}
if (bufferPoolSize != 0) {
return ((float) usedBuffers) / bufferPoolSize;
} else {
return 0.0f;
}
和inPoolUsage类似,也是看bufferPool的情况
所以inPoolUsage,outPoolUsage表示的是inputgate和resultpartition中bufferpool的使用情况
这个bufferpool是inputgate初始化的时候,注册到NetworkEnvironment创建的,
// Setup the buffer pool for each buffer reader
final SingleInputGate[] inputGates = task.getAllInputGates();
for (SingleInputGate gate : inputGates) {
BufferPool bufferPool = null;
try {
bufferPool = networkBufferPool.createBufferPool(gate.getNumberOfInputChannels(), false);
gate.setBufferPool(bufferPool);
}
可以看到默认大小是,inputchanels的size
如果pool用完了,那么inputGate和ResultPartiton就无法继续读取新的数据
latency
在AbstractStreamOperator中,
setup,
protected LatencyGauge latencyGauge;
latencyGauge = this.metrics.gauge("latency", new LatencyGauge(historySize));
注意,这里metrics是OperatorMetricGroup
this.metrics = container.getEnvironment().getMetricGroup().addOperator(config.getOperatorName());
TaskMetricGroup
public OperatorMetricGroup addOperator(String name) {
OperatorMetricGroup operator = new OperatorMetricGroup(this.registry, this, name);
synchronized (this) {
OperatorMetricGroup previous = operators.put(name, operator);
if (previous == null) {
// no operator group so far
return operator;
} else {
// already had an operator group. restore that one.
operators.put(name, previous);
return previous;
}
}
}
LatencyGauge的定义,
/**
* The gauge uses a HashMap internally to avoid classloading issues when accessing
* the values using JMX.
*/
protected static class LatencyGauge implements Gauge<Map<String, HashMap<String, Double>>> {
//LatencySourceDescriptor,包含vertexID和subtaskIndex
//DescriptiveStatistics,统计模块
private final Map<LatencySourceDescriptor, DescriptiveStatistics> latencyStats = new HashMap<>();
private final int historySize;
LatencyGauge(int historySize) {
this.historySize = historySize;
}
public void reportLatency(LatencyMarker marker, boolean isSink) {
LatencySourceDescriptor sourceDescriptor = LatencySourceDescriptor.of(marker, !isSink);
DescriptiveStatistics sourceStats = latencyStats.get(sourceDescriptor);
if (sourceStats == null) { //初始化DescriptiveStatistics
// 512 element window (4 kb)
sourceStats = new DescriptiveStatistics(this.historySize);
latencyStats.put(sourceDescriptor, sourceStats);
}
long now = System.currentTimeMillis();
sourceStats.addValue(now - marker.getMarkedTime()); //当前时间和source发出时时间差值作为延迟
}
@Override
public Map<String, HashMap<String, Double>> getValue() {
while (true) {
try {
Map<String, HashMap<String, Double>> ret = new HashMap<>();
for (Map.Entry<LatencySourceDescriptor, DescriptiveStatistics> source : latencyStats.entrySet()) {
HashMap<String, Double> sourceStatistics = new HashMap<>(6);
sourceStatistics.put("max", source.getValue().getMax());
sourceStatistics.put("mean", source.getValue().getMean());
sourceStatistics.put("min", source.getValue().getMin());
sourceStatistics.put("p50", source.getValue().getPercentile(50));
sourceStatistics.put("p95", source.getValue().getPercentile(95));
sourceStatistics.put("p99", source.getValue().getPercentile(99));
ret.put(source.getKey().toString(), sourceStatistics);
}
return ret;
// Concurrent access onto the "latencyStats" map could cause
// ConcurrentModificationExceptions. To avoid unnecessary blocking
// of the reportLatency() method, we retry this operation until
// it succeeds.
} catch(ConcurrentModificationException ignore) {
LOG.debug("Unable to report latency statistics", ignore);
}
}
}
}
这个Gauge.getValue返回的是个map,太奇葩
latencyStats里面有多少entry,取决于有多少source,以及每个source有几个并发
因为他要记录,每个source operator的某个subtask,到当前operator的该subtask的延迟
public static LatencySourceDescriptor of(LatencyMarker marker, boolean ignoreSubtaskIndex) {
if (ignoreSubtaskIndex) {
return new LatencySourceDescriptor(marker.getVertexID(), -1);
} else {
return new LatencySourceDescriptor(marker.getVertexID(), marker.getSubtaskIndex());
}
}
LatencySourceDescriptor构造函数,由vertexid,和subtaskIndex组成
如果忽略subtaskindex,置为-1
流程
StreamSource
定义LatencyMarksEmitter
private static class LatencyMarksEmitter<OUT> {
private final ScheduledFuture<?> latencyMarkTimer;
public LatencyMarksEmitter(
final ProcessingTimeService processingTimeService,
final Output<StreamRecord<OUT>> output,
long latencyTrackingInterval,
final int vertexID,
final int subtaskIndex) {
latencyMarkTimer = processingTimeService.scheduleAtFixedRate( //根据processingTime定期发送latencyMarker
new ProcessingTimeCallback() {
@Override
public void onProcessingTime(long timestamp) throws Exception {
try {
// ProcessingTimeService callbacks are executed under the checkpointing lock
output.emitLatencyMarker(new LatencyMarker(timestamp, vertexID, subtaskIndex)); //emitLatencyMarker,以processTime为初始时间
} catch (Throwable t) {
// we catch the Throwables here so that we don't trigger the processing
// timer services async exception handler
LOG.warn("Error while emitting latency marker.", t);
}
}
},
0L,
latencyTrackingInterval);
}
source.run,当isLatencyTrackingEnabled,schedule latency marker
public void run(final Object lockingObject, final Output<StreamRecord<OUT>> collector) throws Exception {
final TimeCharacteristic timeCharacteristic = getOperatorConfig().getTimeCharacteristic();
LatencyMarksEmitter latencyEmitter = null;
if(getExecutionConfig().isLatencyTrackingEnabled()) {
latencyEmitter = new LatencyMarksEmitter<>(
getProcessingTimeService(),
collector,
getExecutionConfig().getLatencyTrackingInterval(),
getOperatorConfig().getVertexID(),
getRuntimeContext().getIndexOfThisSubtask());
}
StreamInputProcessor –> processInput
如果是isLatencyMarker
else if(recordOrMark.isLatencyMarker()) {
// handle latency marker
synchronized (lock) {
streamOperator.processLatencyMarker(recordOrMark.asLatencyMarker());
}
continue;
}
对于,chaining, ChainingOutput
private static class ChainingOutput<T> implements Output<StreamRecord<T>> {
protected final OneInputStreamOperator<T, ?> operator;
protected final Counter numRecordsIn;
@Override
public void emitLatencyMarker(LatencyMarker latencyMarker) {
try {
operator.processLatencyMarker(latencyMarker);
}
catch (Exception e) {
throw new ExceptionInChainedOperatorException(e);
}
}
AbstractStreamOperator
public void processLatencyMarker(LatencyMarker latencyMarker) throws Exception {
reportOrForwardLatencyMarker(latencyMarker);
}
protected void reportOrForwardLatencyMarker(LatencyMarker marker) {
// all operators are tracking latencies
this.latencyGauge.reportLatency(marker, false);
// everything except sinks forwards latency markers
this.output.emitLatencyMarker(marker);
}
调用到latencyGauge.reportLatency,逻辑如上
后续继续emitLatencyMarker
currentLowWatermark, checkpointAlignmentTime
OneInputStreamTask
@Override
public void init() throws Exception {
if (numberOfInputs > 0) {
InputGate[] inputGates = getEnvironment().getAllInputGates();
inputProcessor = new StreamInputProcessor<IN>(
inputGates, inSerializer,
this,
configuration.getCheckpointMode(),
getEnvironment().getIOManager(),
getEnvironment().getTaskManagerInfo().getConfiguration());
// make sure that stream tasks report their I/O statistics
inputProcessor.setMetricGroup(getEnvironment().getMetricGroup().getIOMetricGroup());
}
}
StreamInputProcessor
public void setMetricGroup(TaskIOMetricGroup metrics) {
metrics.gauge("currentLowWatermark", new Gauge<Long>() {
@Override
public Long getValue() {
return lastEmittedWatermark;
}
});
metrics.gauge("checkpointAlignmentTime", new Gauge<Long>() {
@Override
public Long getValue() {
return barrierHandler.getAlignmentDurationNanos();
}
});
}
currentLowWatermark,即lastEmittedWatermark
默认值是,
lastEmittedWatermark = Long.MIN_VALUE;
所以如果没有assignTimestampsAndWatermarks,那么currentLowWatermark会是一个极大的负数
public boolean processInput(OneInputStreamOperator<IN, ?> streamOperator, final Object lock) throws Exception {
while (true) {
if (currentRecordDeserializer != null) {
if (result.isFullRecord()) {
StreamElement recordOrMark = deserializationDelegate.getInstance();
if (recordOrMark.isWatermark()) {
long watermarkMillis = recordOrMark.asWatermark().getTimestamp();
if (watermarkMillis > watermarks[currentChannel]) { // 更新每个channel对应的waterMark
watermarks[currentChannel] = watermarkMillis;
long newMinWatermark = Long.MAX_VALUE;
for (long watermark: watermarks) { // 找出所有channel最小的watermark,以最小的为准
newMinWatermark = Math.min(watermark, newMinWatermark);
}
if (newMinWatermark > lastEmittedWatermark) {
lastEmittedWatermark = newMinWatermark; // 将最小的watermark设为lastEmittedWatermark
synchronized (lock) {
streamOperator.processWatermark(new Watermark(lastEmittedWatermark));
}
}
}
continue;
}
checkpointAlignmentTime
barrierHandler.getAlignmentDurationNanos
@Override
public long getAlignmentDurationNanos() {
long start = this.startOfAlignmentTimestamp;
if (start <= 0) {
return latestAlignmentDurationNanos;
} else {
return System.nanoTime() - start;
}
}
startOfAlignmentTimestamp是在这次checkpoint开始的时候打的时间戳,即beginNewAlignment
private void beginNewAlignment(long checkpointId, int channelIndex) throws IOException {
currentCheckpointId = checkpointId;
onBarrier(channelIndex);
startOfAlignmentTimestamp = System.nanoTime();
}
beginNewAlignment在
processBarrier中被调用,
if (numBarriersReceived > 0) {
// this is only true if some alignment is already progress and was not canceled
if (barrierId == currentCheckpointId) {
// regular case
onBarrier(channelIndex);
}
else if (barrierId > currentCheckpointId) {// 当收到新的checkpointid,所以老的id已经过期,需要产生新的checkpoint
// we did not complete the current checkpoint, another started before
LOG.warn("Received checkpoint barrier for checkpoint {} before completing current checkpoint {}. " +
"Skipping current checkpoint.", barrierId, currentCheckpointId);
// let the task know we are not completing this
notifyAbort(currentCheckpointId, new CheckpointDeclineSubsumedException(barrierId));
// abort the current checkpoint
releaseBlocksAndResetBarriers();
// begin a the new checkpoint
beginNewAlignment(barrierId, channelIndex); //标识checkpoint开始
}
else {
// ignore trailing barrier from an earlier checkpoint (obsolete now)
return;
}
}
else if (barrierId > currentCheckpointId) { //新的checkpoint开始
// first barrier of a new checkpoint
beginNewAlignment(barrierId, channelIndex); //标识checkpoint开始
}
所以checkpointAlignmentTime的意思是,当前的checkpoint已经等待多久,因为要等到所有input channel的barrier,checkpoint才会触发
单位是纳秒,所以billion级别代表秒
如果比较大,说明各个并发之前的延迟差异较大,或延迟较高