继承的介绍

继承是一种创建新类的方式,在Python中,新建的类可以继承一个或多个父类,新建的类可称为子类或派生类,父类又可称为基类或超类

需要注意的是:python支持多继承
在Python中,新建的类可以继承一个或多个父类

class ParentClass1: #定义父类
    pass

class ParentClass2: #定义父类
    pass

class SubClass1(ParentClass1): #单继承
    pass

class SubClass2(ParentClass1,ParentClass2): #多继承
    pass

通过类的内置属性__bases__可以查看类继承的所有父类

>>> SubClass2.__bases__
(<class '__main__.ParentClass1'>, <class '__main__.ParentClass2'>)

在Python2中有经典类与新式类之分,没有显式地继承object类的类,以及该类的子类,都是经典类,显式地继承object的类,以及该类的子类,都是新式类。而在Python3中,即使没有显式地继承object,也会默认继承该类,所以python3下的类都是新式类,如下

>>> ParentClass1.__bases__
(<class ‘object'>,)
>>> ParentClass2.__bases__
(<class 'object'>,)

因而在Python3中统一都是新式类,关于经典类与新式类的区别

提示:object类提供了一些常用内置方法的实现,如用来在打印对象时返回字符串的内置方法__str__

python的多继承

# 优点:子类可以同时遗传多个父类的属性,最大限度地重用代码
# 缺点:
        1、违背人的思维习惯:继承表达的是一种什么"是"什么的关系
        2、代码可读性会变差
        3、不建议使用多继承,有可能会引发可恶的菱形问题,扩展性变差,
        如果真的涉及到一个子类不可避免地要重用多个父类的属性,应该使用Mixins

为何要用继承:用来解决类与类之间代码冗余问题

继承与抽象 

要找出类与类之间的继承关系,需要先抽象,再继承。抽象即总结相似之处,总结对象之间的相似之处得到类,总结类与类之间的相似之处就可以得到父类,如下图所示

派生类代码java 派生类python_派生类代码java

基于抽象的结果,我们就找到了继承关系

 

派生类代码java 派生类python_子类_02

基于上图我们可以看出类与类之间的继承指的是什么’是’什么的关系(比如人类,猪类,猴类都是动物类)。子类可以继承/遗传父类所有的属性,因而继承可以用来解决类与类之间的代码重用性问题。比如下面的定义Student类和Teacher类

class Student:
    school="oldbly"
    def __init__(self,name,age,sex):
        self.name=name
        self.age=age
        self.sex=sex

    def choice_class(self):
        print("{} 正在选择班级".format(self.name))

class Teacher:
    school = "oldbly"
    def __init__(self,name,age,sex,salary,level):
        self.name = name
        self.age = age
        self.sex = sex
        self.salary=salary
        self.level=level

    def teach(self):
        print('%s is teaching' %self.name)

类Teacher与Student之间存在重复的代码,老师与学生都是人类,所以我们可以得出如下继承关系,实现代码重用

class OldboyPeople:
    school = "oldbly"
    def __init__(self, name, age, sex):
        self.name = name
        self.age = age
        self.sex = sex

class Student(OldboyPeople):
    def choice_class(self):
        print("{} 正在选择班级".format(self.name))

class Teacher(OldboyPeople):

    def __init__(self,name,age,sex,salary,level):
        # 指名道姓地跟父类OldboyPeople去要__init__
        OldboyPeople.__init__(self,name,age,sex,)
        self.salary=salary
        self.level=level

    def teach(self):
        print('%s is teaching' %self.name)

stu1=Student("alex",18,"man")
tea1=Teacher("egon",18,"man",20000,10)
stu1.choice_class()
tea1.teach()

"""
执行结果
alex 正在选择班级
egon is teaching
"""

Student类中并没有定义__init__方法,但是会从父类中找到__init__,因而仍然可以正常实例化,Teacher类内将与父类共有的__init__方法指明道姓从父类取,自己独有的__init__数据从自己这取,因而仍然可以正常实例化

属性查找

单继承背景下的属性查找

对象在查找属性时,先从对象自己的__dict__中找,如果没有则去子类中找,然后再去父类中找……

示例1:

class Foo:
    def f1(self):
        print('Foo.f1')

    def f2(self):
        print('Foo.f2')
        self.f1() # obj.f1()

class Bar(Foo):
    def f1(self):
        print('Bar.f1')

obj=Bar()
obj.f2()

'''
因为obj是Bar的对象,obj.f2()带入的是Bar所以在父类查找到f2后执行self.f1()时时执行obj.f1()也就是先在Bar内查找
Foo.f2
Bar.f1
'''

示例2:如果想在上例中执行self.f1()时先查找的就是Foo类内的f1可以用下面的方法

方法一:

class Foo:
    def f1(self):
        print('Foo.f1')

    def f2(self):
        print('Foo.f2')
        Foo.f1(self) # 调用当前类中的f1

class Bar(Foo):
    def f1(self):
        print('Bar.f1')

obj=Bar()
obj.f2()

'''
执行结果
Foo.f2
Foo.f1
'''

方法二:

class Foo:
    def __f1(self): # _Foo__f1
        print('Foo.f1')

    def f2(self):
        print('Foo.f2')
        self.__f1() # self._Foo__f1,#因为在定义阶段就发生了变形,so, self.__f1()==>self._Foo__f1(),so调用的是Foo类中的f1

class Bar(Foo):
    def __f1(self): # _Bar__f1
        print('Bar.f1')

obj=Bar()
obj.f2()

'''
执行结果
Foo.f2
Foo.f1
'''

继承的原理和菱形问题

菱形问题

大多数面向对象语言都不支持多继承,而在Python中,一个子类是可以同时继承多个父类的,这固然可以带来一个子类可以对多个不同父类加以重用的好处,但也有可能引发著名的 Diamond problem菱形问题(或称钻石问题,有时候也被称为“死亡钻石”),菱形其实就是对下面这种继承结构的形象比喻

派生类代码java 派生类python_派生类代码java_03

A类在顶部,B类和C类分别位于其下方,D类在底部将两者连接在一起形成菱形。

这种继承结构下导致的问题称之为菱形问题:如果A中有一个方法,B和/或C都重写了该方法,而D没有重写它,那么D继承的是哪个版本的方法:B的还是C的?如下所示

class A(object):
    def test(self):
        print('from A')


class B(A):
    def test(self):
        print('from B')


class C(A):
    def test(self):
        print('from C')


class D(B,C):
    pass


obj = D()
obj.test() # 结果为:from B

要想搞明白obj.test()是如何找到方法test的,需要了解python的继承实现原理

继承原理

python到底是如何实现继承的呢? 对于你定义的每一个类,Python都会计算出一个方法解析顺序(MRO)列表,该MRO列表就是一个简单的所有基类的线性顺序列表,如下

>>> D.mro() # 新式类内置了mro方法可以查看线性列表的内容,经典类没有该内置该方法
[<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.A'>, <class 'object'>]

python会在MRO列表上从左到右开始查找基类,直到找到第一个匹配这个属性的类为止。 而这个MRO列表的构造是通过一个C3线性化算法来实现的。我们不去深究这个算法的数学原理,它实际上就是合并所有父类的MRO列表并遵循如下三条准则:

1.子类会先于父类被检查
2.多个父类会根据它们在列表中的顺序被检查
3.如果对下一个类存在两个合法的选择,选择第一个父类

所以obj.test()的查找顺序是,先从对象obj本身的属性里找方法test,没有找到,则参照属性查找的发起者(即obj)所处类D的MRO列表来依次检索,首先在类D中未找到,然后再B中找到方法test

ps:

1.由对象发起的属性查找,会从对象自身的属性里检索,没有则会按照对象的类.mro()规定的顺序依次找下去,
2.由类发起的属性查找,会按照当前类.mro()规定的顺序依次找下去,

深度优先与广度优先

参照下述代码,多继承结构为非菱形结构,此时(不管是python3新式类,还是python2的经典类或新式类),都会按照先找B这一条分支,然后再找C这一条分支,最后找D这一条分支的顺序直到找到我们想要的属性

派生类代码java 派生类python_子类_04

class E:
    def test(self):
        print('from E')


class F:
    def test(self):
        print('from F')


class B(E):
    def test(self):
        print('from B')


class C(F):
    def test(self):
        print('from C')


class D:
    def test(self):
        print('from D')


class A(B, C, D):
    # def test(self):
    #     print('from A')
    pass


print(A.mro())
'''
[<class '__main__.A'>, <class '__main__.B'>, <class '__main__.E'>, <class '__main__.C'>, <class '__main__.F'>, <class '__main__.D'>, <class 'object'>]
'''

obj = A()
obj.test() # 结果为:from B
# 可依次注释上述类中的方法test来进行验证

如果继承关系为菱形结构,那么经典类与新式类会有不同MRO,分别对应属性的两种查找方式:深度优先和广度优先

派生类代码java 派生类python_派生类代码java_05

 

class G: # 在python2中,未继承object的类及其子类,都是经典类
    def test(self):
        print('from G')

class E(G):
    def test(self):
        print('from E')

class F(G):
    def test(self):
        print('from F')

class B(E):
    def test(self):
        print('from B')

class C(F):
    def test(self):
        print('from C')

class D(G):
    def test(self):
        print('from D')

class A(B,C,D):
    # def test(self):
    #     print('from A')
    pass

obj = A()
obj.test() # 如上图,查找顺序为:obj->A->B->E->G->C->F->D->object
# 可依次注释上述类中的方法test来进行验证,注意请在python2.x中进行测试

派生类代码java 派生类python_派生类代码java_06

class G(object):
    def test(self):
        print('from G')

class E(G):
    def test(self):
        print('from E')

class F(G):
    def test(self):
        print('from F')

class B(E):
    def test(self):
        print('from B')

class C(F):
    def test(self):
        print('from C')

class D(G):
    def test(self):
        print('from D')

class A(B,C,D):
    # def test(self):
    #     print('from A')
    pass

obj = A()
obj.test() # 如上图,查找顺序为:obj->A->B->E->C->F->D->G->object
# 可依次注释上述类中的方法test来进行验证

 Python Mixins机制

# 多继承的正确打开方式:mixins机制
# mixins机制核心:就是在多继承背景下尽可能地提升多继承的可读性
# ps:让多继承满足人的思维习惯=》什么"是"什么

一个子类可以同时继承多个父类,这样的设计常被人诟病,一来它有可能导致可恶的菱形问题,二来在人的世界观里继承应该是个”is-a”关系。 比如轿车类之所以可以继承交通工具类,是因为基于人的世界观,我们可以说:轿车是一个(“is-a”)交通工具,而在人的世界观里,一个物品不可能是多种不同的东西,因此多重继承在人的世界观里是说不通的,它仅仅只是代码层面的逻辑。不过有没有这种情况,一个类的确是需要继承多个类呢?

答案是有,我们还是拿交通工具来举例子:

民航飞机、直升飞机、轿车都是一个(is-a)交通工具,前两者都有一个功能是飞行fly,但是轿车没有,所以如下所示我们把飞行功能放到交通工具这个父类中是不合理的

class Vehicle:  # 交通工具
    def fly(self):
        '''
        飞行功能相应的代码        
        '''
        print("I am flying")

class CivilAircraft(Vehicle):  # 民航飞机
    pass

class Helicopter(Vehicle):  # 直升飞机
    pass

class Car(Vehicle):  # 汽车并不会飞,但按照上述继承关系,汽车也能飞了
    pass

但是如果民航飞机和直升机都各自写自己的飞行fly方法,又违背了代码尽可能重用的原则(如果以后飞行工具越来越多,那会重复代码将会越来越多)。

怎么办???为了尽可能地重用代码,那就只好在定义出一个飞行器的类,然后让民航飞机和直升飞机同时继承交通工具以及飞行器两个父类,这样就出现了多重继承。这时又违背了继承必须是”is-a”关系。这个难题该怎么解决?

不同的语言给出了不同的方法,让我们先来了解Java的处理方法。Java提供了接口interface功能,来实现多重继承:

派生类代码java 派生类python_python_07

派生类代码java 派生类python_子类_08

// 抽象基类:交通工具类
public abstract class Vehicle {
}

// 接口:飞行器
public interface Flyable {
    public void fly();
}

// 类:实现了飞行器接口的类,在该类中实现具体的fly方法,这样下面民航飞机与直升飞机在实现fly时直接重用即可
public class FlyableImpl implements Flyable {
    public void fly() {
        System.out.println("I am flying");
    }
}



// 民航飞机,继承自交通工具类,并实现了飞行器接口
public class CivilAircraft extends Vehicle implements Flyable {
    private Flyable flyable;

    public CivilAircraft() {
        flyable = new FlyableImpl();
    }

    public void fly() {
        flyable.fly();
    }
}

// 直升飞机,继承自交通工具类,并实现了飞行器接口
public class Helicopter extends Vehicle implements Flyable {
    private Flyable flyable;

    public Helicopter() {
        flyable = new FlyableImpl();
    }

    public void fly() {
        flyable.fly();
    }
}

// 汽车,继承自交通工具类,
public class Car extends Vehicle {
}

java实现多重继承

现在我们的飞机同时具有了交通工具及飞行器两种属性,而且我们不需要重写飞行器中的飞行方法,同时我们没有破坏单一继承的原则。飞机就是一种交通工具,可飞行的能力是飞机的属性,通过继承接口来获取。

回到主题,Python语言可没有接口功能,但Python提供了Mixins机制,简单来说Mixins机制指的是子类混合(mixin)不同类的功能,而这些类采用统一的命名规范(例如Mixin后缀),以此标识这些类只是用来混合功能的,并不是用来标识子类的从属"is-a"关系的,所以Mixins机制本质仍是多继承,但同样遵守”is-a”关系,如下

class Vehicle:  # 交通工具
    pass


class FlyableMixin:
    def fly(self):
        '''
        飞行功能相应的代码        
        '''
        print("I am flying")


class CivilAircraft(FlyableMixin, Vehicle):  # 民航飞机
    pass


class Helicopter(FlyableMixin, Vehicle):  # 直升飞机
    pass


class Car(Vehicle):  # 汽车
    pass

# ps: 采用某种规范(如命名规范)来解决具体的问题是python惯用的套路
# 补充:通常Mixin结果的类放在左边

可以看到,上面的CivilAircraft、Helicopter类实现了多继承,不过它继承的第一个类我们起名为FlyableMixin,而不是Flyable,这个并不影响功能,但是会告诉后来读代码的人,这个类是一个Mixin类,表示混入(mix-in),这种命名方式就是用来明确地告诉别人(python语言惯用的手法),这个类是作为功能添加到子类中,而不是作为父类,它的作用同Java中的接口。所以从含义上理解,CivilAircraft、Helicopter类都只是一个Vehicle,而不是一个飞行器。

使用Mixin类实现多重继承要非常小心

  • 首先它必须表示某一种功能,而不是某个物品,python 对于mixin类的命名方式一般以 Mixin, able, ible 为后缀
  • 其次它必须责任单一,如果有多个功能,那就写多个Mixin类,一个类可以继承多个Mixin,为了保证遵循继承的“is-a”原则,只能继承一个标识其归属含义的父类
  • 然后,它不依赖于子类的实现
  • 最后,子类即便没有继承这个Mixin类,也照样可以工作,就是缺少了某个功能。(比如飞机照样可以载客,就是不能飞了)

Mixins是从多个类中重用代码的好方法,但是需要付出相应的代价,我们定义的Minx类越多,子类的代码可读性就会越差,并且更恶心的是,在继承的层级变多时,代码阅读者在定位某一个方法到底在何处调用时会晕头转向

派生类代码java 派生类python_python_07

派生类代码java 派生类python_子类_08

class Displayer:
    def display(self, message):
        print(message)


class LoggerMixin:
    def log(self, message, filename='logfile.txt'):
        with open(filename, 'a') as fh:
            fh.write(message)

    def display(self, message):
        super().display(message) # super的用法请参考下一小节
        self.log(message)


class MySubClass(LoggerMixin, Displayer):
    def log(self, message):
        super().log(message, filename='subclasslog.txt') 


obj = MySubClass()
obj.display("This string will be shown and logged in subclasslog.txt")


# 属性查找的发起者是obj,所以会参照类MySubClass的MRO来检索属性
#[<class '__main__.MySubClass'>, <class '__main__.LoggerMixin'>, <class '__main__.Displayer'>, <class 'object'>]

# 1、首先会去对象obj的类MySubClass找方法display,没有则去类LoggerMixin中找,找到开始执行代码
# 2、执行LoggerMixin的第一行代码:执行super().display(message),参照MySubClass.mro(),super会去下一个类即类Displayer中找,找到display,开始执行代码,打印消息"This string will be shown and logged in subclasslog.txt"
# 3、执行LoggerMixin的第二行代码:self.log(message),self是对象obj,即obj.log(message),属性查找的发起者为obj,所以会按照其类MySubClass.mro(),即MySubClass->LoggerMixin->Displayer->object的顺序查找,在MySubClass中找到方法log,开始执行super().log(message, filename='subclasslog.txt'),super会按照MySubClass.mro()查找下一个类,在类LoggerMixin中找到log方法开始执行,最终将日志写入文件subclasslog.txt

View Code

派生与方法重用

子类可以派生出自己新的属性,在进行属性查找时,子类中的属性名会优先于父类被查找,例如每个老师还有职称这一属性,我们就需要在Teacher类中定义该类自己的__init__覆盖父类的

class People:
    school='清华大学'

    def __init__(self,name,sex,age):
        self.name=name
        self.sex=sex
        self.age=age

class Teacher(People):
    def __init__(self,name,sex,age,title): # 派生
        self.name=name
        self.sex=sex
        self.age=age
        self.title=title
    def teach(self):
        print('%s is teaching' %self.name)

obj=Teacher('lili','female',28,'高级讲师') #只会找自己类中的__init__,并不会自动调用父类的
print(obj.name,obj.sex,obj.age,obj.title)   #lili female 28 高级讲师

很明显子类Teacher中__init__内的前三行又是在写重复代码,若想在子类派生出的方法内重用父类的功能,有两种实现方式

方法一:“指名道姓”地调用某一个类的函数==》不依赖于继承关系

class People:
    school='清华大学'

    def __init__(self,name,sex,age):
        self.name=name
        self.sex=sex
        self.age=age

class Teacher(People):
    def __init__(self,name,sex,age,title): # 派生
        People.__init__(self,name,sex,age)    #调用的是函数,因而需要传入self,
        self.title=title
    def teach(self):
        print('%s is teaching' %self.name)

obj=Teacher('lili','female',28,'高级讲师') 
print(obj.name,obj.sex,obj.age,obj.title)   #lili female 28 高级讲师

方法二:super()调用父类提供给自己的方法=》严格依赖继承关系

调用super()会得到一个特殊的对象,该对象会参照发起属性查找的那个类的mro,去当前类的父类中找属性,

class People:
    school='清华大学'

    def __init__(self,name,sex,age):
        self.name=name
        self.sex=sex
        self.age=age

class Teacher(People):
    def __init__(self,name,sex,age,title): # 派生
        #super(Teacher,self).__init__(name,sex,age)   #在Python2中super的使用需要完整地写成super(自己的类名,self) ,而在python3中可以简写为super()。
        super().__init__(name,sex,age)      #调用的是方法,自动传入对象、把super()放在子类派生的属性前面
        self.title=title
    def teach(self):
        print('%s is teaching' %self.name)

obj=Teacher('lili','female',28,'高级讲师')
print(obj.name,obj.sex,obj.age,obj.title)   #lili female 28 高级讲师

这两种方式的区别是:方式一是跟继承没有关系的,而方式二的super()是依赖于继承的,并且即使没有直接继承关系,super()仍然会按照MRO继续往后查找

案例:

class A:    #A没有继承B
    def test(self):
        super().test()

class B:
    def test(self):
        print('from B')

class C(A,B):     
    pass

obj=C()      # 属性查找的发起者是类C的对象obj,所以中途发生的属性查找都是参照C.mro()
obj.test()
print(C.mro())     #[<class '__main__.C'>, <class '__main__.A'>, <class '__main__.B'>, <class 'object'>]

# 在代码层面A并不是B的子类,但从MRO列表来看,属性查找时,就是按照顺序C->A->B->object,B就相当于A的“父类”

obj.test()首先找C自己下面有没有test()方法,发现没有再到A下查找test()方法,发现有test()方法,执行super().test()会基于MRO列表(以C.mro()为准)当前所处的位置(当前找到A,下一个是B)继续往后查找test(),然后在B中找到了test方法并执行。

关于在子类中重用父类功能的这两种方式,使用任何一种都可以,但是在最新的代码中还是推荐使用super()

组合

在一个类中以另外一个类的对象作为数据属性,称为类的组合。组合与继承都是用来解决代码的重用性问题。不同的是:继承是一种“是”的关系,比如老师是人、学生是人,当类之间有很多相同的之处,应该使用继承;而组合则是一种“有”的关系,比如老师有生日,老师有多门课程,当类之间有显著不同,并且较小的类是较大的类所需要的组件时,应该使用组合,如下示例

class Course:
    def __init__(self,name,period,price):
        self.name=name
        self.period=period
        self.price=price
    def tell_info(self):
        print('<%s %s %s>' %(self.name,self.period,self.price))

class Date:
    def __init__(self,year,mon,day):
        self.year=year
        self.mon=mon
        self.day=day
    def tell_birth(self):
       print('<%s-%s-%s>' %(self.year,self.mon,self.day))

class People:
    school='清华大学'
    def __init__(self,name,sex,age):
        self.name=name
        self.sex=sex
        self.age=age

#Teacher类基于继承来重用People的代码,基于组合来重用Date类和Course类的代码
class Teacher(People): #老师是人
    def __init__(self,name,sex,age,title,year,mon,day):
        super().__init__(name,age,sex)
        self.birth=Date(year,mon,day) #老师有生日
        self.courses=[] #老师有课程,可以在实例化后,往该列表中添加Course类的对象
    def teach(self):
        print('%s is teaching' %self.name)


python=Course('python','3mons',3000.0)
linux=Course('linux','5mons',5000.0)
teacher1=Teacher('lili','female',28,'博士生导师',1990,3,23)

# teacher1有两门课程
teacher1.courses.append(python)
teacher1.courses.append(linux)

# 重用Date类的功能
teacher1.birth.tell_birth()

# 重用Course类的功能
for obj in teacher1.courses: 
    obj.tell_info()

此时对象teacher1集对象独有的属性、Teacher类中的内容、Course类中的内容于一身(都可以访问到),是一个高度整合的产物