python据说功能强大,触角伸到各个领域,网上搜了一下其科学计算和工程计算能力也相当强,具备各种第三方包,除了性能软肋外,其他无可指摘,甚至可以同matlab等专业工具一较高下。

从网上找了一个使用遗传算法实现数据拟合的例子学习了一下,确实Python相当贴合自然语言,终于编程语言也能说人话了,代码整体简洁、优雅。。

代码功能:给出一个隐藏函数 例如 z=x^2+y^2,生成200个数据,利用这200个数据,使用遗传算法猜测这些数据是什么公式生成的。 (说的太直白,一点都不高大上)

代码如下:

1 # coding=utf-8
  2 from random import random, randint, choice,uniform
  3 from copy import deepcopy
  4 import numpy as np
  5 import matplotlib.pyplot as plt
  6 
  7 from random import random, randint, choice
  8 from copy import deepcopy
  9 import numpy as np
 10 
 11 # 运算类
 12 class fwrapper:
 13     def __init__(self, function, childcount, name):
 14         self.function = function
 15         self.childcount = childcount
 16         self.name = name
 17 
 18 # 节点类
 19 class node:
 20     def __init__(self, fw, children):
 21         self.function = fw.function
 22         self.name = fw.name
 23         self.children = children
 24 #将inp指定的运算符作用到子节点上
 25     def evaluate(self, inp):
 26         # 循环调用子节点的子节点的子节点....的evaluate方法
 27         results = [n.evaluate(inp) for n in self.children]
 28         # 返回运算结果
 29         return self.function(results)
 30 #打印本节点及所属节点的操作运算符
 31     def display(self, indent=0):
 32         print(' ' * indent) + self.name
 33         for c in self.children:
 34             c.display(indent + 1)
 35 
 36 #参数节点类,x+y 其中x,y都是参数节点
 37 class paramnode:
 38     def __init__(self, idx):
 39         self.idx = idx
 40 # evaluate方法返回paramnode节点值本身
 41     def evaluate(self, inp):
 42         return inp[self.idx]
 43 
 44     def display(self, indent=0):
 45         print '%sp%d' % (' ' * indent, self.idx)
 46 
 47 # 常数节点
 48 class constnode:
 49     def __init__(self, v):
 50         self.v = v
 51 
 52     def evaluate(self, inp):
 53         return self.v
 54 
 55     def display(self, indent=0):
 56         print '%s%d' % (' ' * indent, self.v)
 57 
 58 # 操作运算符类
 59 class opera:
 60     # 使用前面定义的fwrapper类生产常用的加减乘除运算,第一个参数是本运算执行方式,第二个参数是本运算接受的参数个数,第三个参数是本运算名称
 61     addw = fwrapper(lambda l: l[0] + l[1], 2, 'add')
 62     subw = fwrapper(lambda l: l[0] - l[1], 2, 'subtract')
 63     mulw = fwrapper(lambda l: l[0] * l[1], 2, 'multiply')
 64 
 65     def iffunc(l):
 66         if l[0] > 0:
 67             return l[1]
 68         else:
 69             return l[2]
 70     #定义if运算
 71     ifw = fwrapper(iffunc, 3, 'if')
 72 
 73     def isgreater(l):
 74         if l[0] > l[1]:
 75             return 1
 76         else:
 77             return 0
 78     #定义greater运算
 79     gtw = fwrapper(isgreater, 2, 'isgreater')
 80     #构建运算符集合
 81     flist = [addw, mulw, ifw, gtw, subw]
 82 
 83     #使用node,paramnode,fwrapper构建一个example
 84     def exampletree(self):
 85         return node(self.ifw, [node(self.gtw, [paramnode(0), constnode(3)]), node(self.addw, [paramnode(1), constnode(5)]),
 86                           node(self.subw, [paramnode(1), constnode(2)]), ])
 87 
 88 
 89     # 构建一颗随机运算数,pc为参数(分叉)个数,maxdepth为树的深度,fpr为运算符个数在运算符加节点总数中所占比例,ppr为参数个数在参数加常数个数总数中所占的比例
 90     def makerandomtree(self,pc, maxdepth=4, fpr=0.5, ppr=0.6):
 91         if random() < fpr and maxdepth > 0:
 92             f = choice(self.flist)
 93             # 递归调用makerandomtree实现子节点的创建
 94             children = [self.makerandomtree(pc, maxdepth - 1, fpr, ppr) for i in range(f.childcount)]
 95             return node(f, children)
 96         elif random() < ppr:
 97             return paramnode(randint(0, pc - 1))
 98         else:
 99             return constnode(randint(0, 10))
100 
101 
102     #变异,变异概率probchange=0.1
103     def mutate(self,t, pc, probchange=0.1):
104         # 变异后返回一颗随机树
105         if random() < probchange:
106             return self.makerandomtree(pc)
107         else:
108             result = deepcopy(t)
109             # 递归调用,给其子节点变异的机会
110             if isinstance(t, node):
111                 result.children = [self.mutate(c, pc, probchange) for c in t.children]
112             return result
113 
114     #交叉
115     def crossover(self,t1, t2, probswap=0.7, top=1):
116         # 如果符合交叉概率,就将t2的值返回,实现交叉;
117         if random() < probswap and not top:
118             return deepcopy(t2)
119         else:
120             #如果本层节点未实现交配,递归询问子节点是否符合交配条件
121             #首先使用deepcopy保存本节点
122             result = deepcopy(t1)
123             if isinstance(t1, node) and isinstance(t2, node):
124                 #依次递归询问t1下的各子孙节点交配情况,交配对象为t2的各子孙;t1,t2家族同辈交配
125                 result.children = [self.crossover(c, choice(t2.children), probswap, 0) for c in t1.children]
126             return result
127 
128     # random2.display()
129     # muttree=mutate(random2,2)
130     # muttree.display()
131     # cross=crossover(random1,random2)
132     # cross.display()
133 
134     #设置一个隐藏函数,也就是原始函数
135     def hiddenfunction(self,x, y):
136         return x ** 2+ y**2
137 
138     #依照隐藏函数,生成坐标数据
139     def buildhiddenset(self):
140             rows = []
141             for i in range(200):
142                 x = randint(0, 10)
143                 x=uniform(-1,1)
144                 y = randint(0, 10)
145                 y=uniform(-1,1)
146                 rows.append([x, y, self.hiddenfunction(x, y)])
147             print("rows:",rows)
148             return rows
149 
150     #拟合成绩函数,判定拟合函数(实际是一颗图灵树)贴近原始函数的程度
151     def scorefunction(self,tree, s):
152         dif = 0
153         # print("tree:",tree)
154         # print("s:",s)
155         for data in s:
156             # print("data[0]:",data[0])
157             # print("data[1]:",data[1])
158             v = tree.evaluate([data[0],data[1]])
159             #累加每个数据的绝对值偏差
160             dif += abs(v - data[2])
161         return dif
162 
163     #返回一个成绩判定函数rankfunction的句柄
164     def getrankfunction(self,dataset):
165         #此函数调用拟合成绩函数,并对成绩排序,返回各个种群的成绩
166         def rankfunction(population):
167             scores = [(self.scorefunction(t, dataset), t) for t in population]
168             scores.sort()
169             return scores
170         return rankfunction
171 
172     # hiddenset=buildhiddenset()
173     # scorefunction(random2,hiddenset)
174     # scorefunction(random1,hiddenset)
175 
176     def evolve(self,pc, popsize, rankfunction, maxgen=500, mutationrate=0.1, breedingrate=0.4, pexp=0.7, pnew=0.05):
177         #轮盘算法
178         def selectindex():
179             return int(np.log(random()) / np.log(pexp))
180         #使用随机树生成第一代各种群
181         population = [self.makerandomtree(pc) for i in range(popsize)]
182         #计算每一代各种群的成绩,
183         for i in range(maxgen):
184             scores = rankfunction(population)
185             #打印历代最好成绩
186             print('the best score in genneration ',i,':',scores[0][0])
187             #成绩完全吻合原函数的话,退出函数
188             if scores[0][0] == 0:
189                 break
190             #创建新一代各种群,成绩前两名的直接进入下一代
191             newpop = [scores[0][1], scores[1][1]]
192             while len(newpop) < popsize:
193                 #pnew为引进随机种群概率,未达此概率的,使用原种群的交配、变异生成新种群
194                 if random() > pnew:
195                     newpop.append(
196                         self.mutate(self.crossover(scores[selectindex()][1], scores[selectindex()][1], probswap=breedingrate), pc,
197                                probchange=mutationrate))
198                 #引入随机种群
199                 else:
200                     newpop.append(self.makerandomtree(pc))
201             population = newpop
202             #打印历代最好种群
203             # scores[0][1].display()
204         return scores[0][1]
205 
206 
207 
208 def main(argv):
209     e=opera()
210     def exampletree():
211         return node(e.ifw,[node(e.gtw,[paramnode(0),constnode(3)]),node(e.addw,[paramnode(1),constnode(5)]),node(e.subw,[paramnode(1),constnode(2)])])
212 
213 
214     # random1=e.makerandomtree(2)
215     # random1.evaluate([7,1])
216     # random1.evaluate([2,4])
217     # random2=e.makerandomtree(2)
218     # random2.evaluate([5,3])
219     # random2.evaluate([5,20])
220     # random1.display()
221     # random2.display()
222 
223     # exampletree = e.exampletree()
224     # exampletree.display()
225     # print(exampletree.evaluate([6, 1]))
226     # print('after evaluate:')
227     # exampletree.display()
228     # exampletree.evaluate([2, 3])
229     # exampletree.evaluate([5, 3])
230     # exampletree.display()
231 
232     a=opera()
233     row2=a.buildhiddenset()
234     # fig=plt.figure()
235     # ax=fig.add_subplot(1,1,1)
236     # plt.plot(np.random.randn(1000).cumsum())
237     # plt.show()
238 
239 
240 
241     from mpl_toolkits.mplot3d import Axes3D
242     fig = plt.figure()
243     ax = fig.add_subplot(111, projection='3d')
244     X = [1, 1, 2, 2]
245     Y = [3, 4, 4, 3]
246     Z = [1, 2, 1, 1]
247     rx=[]
248     ry=[]
249     rz=[]
250     for i in row2:
251         rx.append(i[0])
252         ry.append(i[1])
253         rz.append(i[2])
254 
255     ax.plot_trisurf(rx, ry, rz)
256     rz2=[]
257     rf = a.getrankfunction(row2)
258     final = a.evolve(2, 100, rf, mutationrate=0.2, breedingrate=0.1, pexp=0.7, pnew=0.1,maxgen=500)
259     print('__________________is it?_________________________')
260     final.display()
261     for j in range(0,len(rx)):
262         rz2.append(final.evaluate([rx[j],ry[j]]))
263     fig2 = plt.figure()
264     ax2 = fig2.add_subplot(111, projection='3d')
265     ax2.plot_trisurf(rx, ry, rz2)
266 
267     plt.show()
268 
269 
270     # print(rf)
271     # final = a.evolve(2, 500, rf, mutationrate=0.2, breedingrate=0.1, pexp=0.7, pnew=0.1)
272     # print("final:",final)
273     # print(final.evaluate([1,8]))
274     # print(final.evaluate([2,9]))
275 
276 
277 
278 
279 
280 if __name__=="__main__":281     main(0)

 

看懂不一定写的出来,这是这次写这个程序最大的体会, 得定时拿出来复习复习。