目录
1Rest
2操作索引
put get delete
3查询
基本查询(match, match_all,term)
结果过滤(_source过滤、指定includes和excludes、fuzzy、filter)
高级查询(bool range)
排序(order:分为单字段与多字段)
4聚合(aggregations:分为桶与度量)
1Rest
REST,即Representational State Transfer的缩写。直接翻译的意思是"表现层状态转化"。
它是一种互联网应用程序的API设计理念:URL定位资源,用HTTP动词(GET,POST,DELETE,DETC)描述操作。
2.操作索引
2.1.基本概念
Elasticsearch也是基于Lucene的全文检索库,本质也是存储数据,很多概念与MySQL类似的。
对比关系:
索引(indices)--------------------------------Databases 数据库
类型(type)-----------------------------Table 数据表
文档(Document)----------------Row 行
字段(Field)-------------------Columns 列
2.2.创建索引
2.2.1.语法
Elasticsearch采用Rest风格API,因此其API就是一次http请求,你可以用任何工具发起http请求
创建索引的请求格式:
请求方式:PUT
请求路径:/索引库名
请求参数:json格式:
{
"settings": {
"number_of_shards": 3,
"number_of_replicas": 2
}
}
settings:索引库的设置
number_of_shards:分片数量
number_of_replicas:副本数量
2.3.查看索引设置
语法
Get请求可以帮我们查看索引信息,格式:
2.4.删除索引
删除索引使用DELETE请求
语法
DELETE /索引库名
2.5.映射配置
索引有了,接下来肯定是添加数据。但是,在添加数据之前必须定义映射。
什么是映射?
映射是定义文档的过程,文档包含哪些字段,这些字段是否保存,是否索引,是否分词等
只有配置清楚,Elasticsearch才会帮我们进行索引库的创建(不一定)
2.5.1.创建映射字段
语法
请求方式依然是PUT
PUT /索引库名/_mapping/类型名称
{
"properties": {
"字段名": {
"type": "类型",
"index": true,
"store": true,
"analyzer": "分词器"
}
}
}
类型名称:就是前面将的type的概念,类似于数据库中的不同表 字段名:任意填写 ,可以指定许多属性,例如:
type:类型,可以是text、long、short、date、integer、object等
index:是否索引,默认为true
store:是否存储,默认为false
analyzer:分词器,这里的ik_max_word即使用ik分词器
示例
发起请求:
PUT heima/_mapping/goods
{
"properties": {
"title": {
"type": "text",
"analyzer": "ik_max_word"
},
"images": {
"type": "keyword",
"index": "false"
},
"price": {
"type": "float"
}
}
}
响应结果:
{
"acknowledged": true
}
3.查询
我们从4块来讲查询:
基本查询
结果过滤
高级查询
排序
3.1.基本查询:
基本语法
GET /索引库名/_search
{
"query":{
"查询类型":{
"查询条件":"查询条件值"
}
}
}
这里的query代表一个查询对象,里面可以有不同的查询属性
查询类型:
例如:match_all, match,term , range 等等
查询条件:查询条件会根据类型的不同,写法也有差异,后面详细讲解
3.1.1 查询所有(match_all)
示例:
GET /heima/_search
{
"query":{
"match_all": {}
}
}
3.1.2 匹配查询(match)
3.1.3 多字段查询(multi_match)
3.1.4 词条匹配(term)
term 查询被用于精确值 匹配,这些精确值可能是数字、时间、布尔或者那些未分词的字符串
3.1.5 多词条精确匹配(terms)
terms 查询和 term 查询一样,但它允许你指定多值进行匹配。如果这个字段包含了指定值中的任何一个值,那么这个文档满足条件:
3.2.结果过滤
默认情况下,elasticsearch在搜索的结果中,会把文档中保存在_source的所有字段都返回。
如果我们只想获取其中的部分字段,我们可以添加_source的过滤
3.2.1.直接指定字段
示例:
GET /heima/_search
{
"_source": ["title","price"],
"query": {
"term": {
"price": 2699
}
}
}
3.2.2.指定includes和excludes
我们也可以通过:
includes:来指定想要显示的字段
excludes:来指定不想要显示的字段
3.3 高级查询
3.3.1 布尔组合(bool)
bool把各种其它查询通过must(与)、must_not(非)、should(或)的方式进行组合
3.3.2 范围查询(range)
range 查询找出那些落在指定区间内的数字或者时间
GET /heima/_search
{
"query":{
"range": {
"price": {
"gte": 1000.0,
"lt": 2800.00
}
}
}
}
range查询允许以下字符:
操作符 说明
gt 大于
gte 大于等于
lt 小于
lte 小于等于
3.3.3 模糊查询(fuzzy)
fuzzy 查询是 term 查询的模糊等价。它允许用户搜索词条与实际词条的拼写出现偏差,但是偏差的编辑距离不得超过2:
3.4 过滤(filter)
条件查询中进行过滤
所有的查询都会影响到文档的评分及排名。如果我们需要在查询结果中进行过滤,并且不希望过滤条件影响评分,那么就不要把过滤条件作为查询条件来用。而是使用filter方式:
3.5 排序
3.4.1 单字段排序
sort 可以让我们按照不同的字段进行排序,并且通过order指定排序的方式
GET /heima/_search
{
"query": {
"match": {
"title": "小米手机"
}
},
"sort": [
{
"price": {
"order": "desc"
}
}
]
}
3.4.2 多字段排序
假定我们想要结合使用 price和 _score(得分) 进行查询,并且匹配的结果首先按照价格排序,然后按照相关性得分排序:
4. 聚合aggregations
聚合可以让我们极其方便的实现对数据的统计、分析。例如:
什么品牌的手机最受欢迎?
这些手机的平均价格、最高价格、最低价格?
这些手机每月的销售情况如何?
实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现实时搜索效果
Elasticsearch中的聚合,包含多种类型,最常用的两种,一个叫桶,一个叫度量:
桶(bucket)
桶的作用,是按照某种方式对数据进行分组,每一组数据在ES中称为一个桶,例如我们根据国籍对人划分,可以得到中国桶、英国桶,日本桶……或者我们按照年龄段对人进行划分:010,1020,2030,3040等。
度量(metrics)
分组完成以后,我们一般会对组中的数据进行聚合运算,例如求平均值、最大、最小、求和等,这些在ES中称为度量
4.2 聚合为桶
首先,我们按照 汽车的颜色color来划分桶
GET /cars/_search
{
"size" : 0,
"aggs" : {
"popular_colors" : {
"terms" : {
"field" : "color"
}
}
}
}
size: 查询条数,这里设置为0,因为我们不关心搜索到的数据,只关心聚合结果,提高效率
aggs:声明这是一个聚合查询,是aggregations的缩写
popular_colors:给这次聚合起一个名字,任意。
terms:划分桶的方式,这里是根据词条划分
field:划分桶的字段