飞桨-零基础实践深度学习-目标检测心得
我有幸参加百度的AI课程《零基础实践深度学习》,现在记录 一下第三周课程之目标检测的实践与感悟。
首先,我先用我自己的话来描述一下目标检测。目标检测看作一个任务,我们对任务拆分,可以大致分为图像划分、对众多划分出图像的特征提取、众多特征与标签对比建立损失函数并进行学习。
然后我们来看一下目标检测的官方介绍图。
以上,读者可以对目标检测的工作流建立起大致的概念。
下面我们通过YOLO V3来分别看一下图像特征提取和损失函数的建立。
图像特征提取的网络是Darknet53,也就是说,YOLO-V3算法使用的骨干网络是Darknet53。Darknet53网络的具体结构如图所示,在ImageNet图像分类任务上取得了很好的成绩。在检测任务中,将图中C0后面的平均池化、全连接层和Softmax去掉,保留从输入到C0部分的网络结构,作为检测模型的基础网络结构,也称为骨干网络。YOLO-V3模型会在骨干网络的基础上,再添加检测相关的网络模块。
损失函数的建立是通过特征图与标签建立连接来实现。如下图。建立连接的意思是,对特征图进行卷积,最终输出的通道数与图像的划分方格的大小对应起来,不同的通道一一对应标签上的数据。按图中例子来说,标签的数据在这里是(5+7)*3 = 36.其中5是是否包含目标和坐标,7是类别数,3是图片的通道数。
以上,读者便对目标检测的原理有了一定的概念。下面我们进入代码实践。
Darknet53网络
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay
from paddle.fluid.dygraph.nn import Conv2D, BatchNorm
from paddle.fluid.dygraph.base import to_variable
# YOLO-V3骨干网络结构Darknet53的实现代码
class ConvBNLayer(fluid.dygraph.Layer):
"""
卷积 + 批归一化,BN层之后激活函数默认用leaky_relu
"""
def __init__(self,
ch_in,
ch_out,
filter_size=3,
stride=1,
groups=1,
padding=0,
act="leaky",
is_test=True):
super(ConvBNLayer, self).__init__()
self.conv = Conv2D(
num_channels=ch_in,
num_filters=ch_out,
filter_size=filter_size,
stride=stride,
padding=padding,
groups=groups,
param_attr=ParamAttr(
initializer=fluid.initializer.Normal(0., 0.02)),
bias_attr=False,
act=None)
self.batch_norm = BatchNorm(
num_channels=ch_out,
is_test=is_test,
param_attr=ParamAttr(
initializer=fluid.initializer.Normal(0., 0.02),
regularizer=L2Decay(0.)),
bias_attr=ParamAttr(
initializer=fluid.initializer.Constant(0.0),
regularizer=L2Decay(0.)))
self.act = act
def forward(self, inputs):
out = self.conv(inputs)
out = self.batch_norm(out)
if self.act == 'leaky':
out = fluid.layers.leaky_relu(x=out, alpha=0.1)
return out
class DownSample(fluid.dygraph.Layer):
"""
下采样,图片尺寸减半,具体实现方式是使用stirde=2的卷积
"""
def __init__(self,
ch_in,
ch_out,
filter_size=3,
stride=2,
padding=1,
is_test=True):
super(DownSample, self).__init__()
self.conv_bn_layer = ConvBNLayer(
ch_in=ch_in,
ch_out=ch_out,
filter_size=filter_size,
stride=stride,
padding=padding,
is_test=is_test)
self.ch_out = ch_out
def forward(self, inputs):
out = self.conv_bn_layer(inputs)
return out
class BasicBlock(fluid.dygraph.Layer):
"""
基本残差块的定义,输入x经过两层卷积,然后接第二层卷积的输出和输入x相加
"""
def __init__(self, ch_in, ch_out, is_test=True):
super(BasicBlock, self).__init__()
self.conv1 = ConvBNLayer(
ch_in=ch_in,
ch_out=ch_out,
filter_size=1,
stride=1,
padding=0,
is_test=is_test
)
self.conv2 = ConvBNLayer(
ch_in=ch_out,
ch_out=ch_out*2,
filter_size=3,
stride=1,
padding=1,
is_test=is_test
)
def forward(self, inputs):
conv1 = self.conv1(inputs)
conv2 = self.conv2(conv1)
out = fluid.layers.elementwise_add(x=inputs, y=conv2, act=None)
return out
class LayerWarp(fluid.dygraph.Layer):
"""
添加多层残差块,组成Darknet53网络的一个层级
"""
def __init__(self, ch_in, ch_out, count, is_test=True):
super(LayerWarp,self).__init__()
self.basicblock0 = BasicBlock(ch_in,
ch_out,
is_test=is_test)
self.res_out_list = []
for i in range(1, count):
res_out = self.add_sublayer("basic_block_%d" % (i), #使用add_sublayer添加子层
BasicBlock(ch_out*2,
ch_out,
is_test=is_test))
self.res_out_list.append(res_out)
def forward(self,inputs):
y = self.basicblock0(inputs)
for basic_block_i in self.res_out_list:
y = basic_block_i(y)
return y
DarkNet_cfg = {53: ([1, 2, 8, 8, 4])}
class DarkNet53_conv_body(fluid.dygraph.Layer):
def __init__(self,
is_test=True):
super(DarkNet53_conv_body, self).__init__()
self.stages = DarkNet_cfg[53]
self.stages = self.stages[0:5]
# 第一层卷积
self.conv0 = ConvBNLayer(
ch_in=3,
ch_out=32,
filter_size=3,
stride=1,
padding=1,
is_test=is_test)
# 下采样,使用stride=2的卷积来实现
self.downsample0 = DownSample(
ch_in=32,
ch_out=32 * 2,
is_test=is_test)
# 添加各个层级的实现
self.darknet53_conv_block_list = []
self.downsample_list = []
for i, stage in enumerate(self.stages):
conv_block = self.add_sublayer(
"stage_%d" % (i),
LayerWarp(32*(2**(i+1)),
32*(2**i),
stage,
is_test=is_test))
self.darknet53_conv_block_list.append(conv_block)
# 两个层级之间使用DownSample将尺寸减半
for i in range(len(self.stages) - 1):
downsample = self.add_sublayer(
"stage_%d_downsample" % i,
DownSample(ch_in=32*(2**(i+1)),
ch_out=32*(2**(i+2)),
is_test=is_test))
self.downsample_list.append(downsample)
def forward(self,inputs):
out = self.conv0(inputs)
#print("conv1:",out.numpy())
out = self.downsample0(out)
#print("dy:",out.numpy())
blocks = []
for i, conv_block_i in enumerate(self.darknet53_conv_block_list): #依次将各个层级作用在输入上面
out = conv_block_i(out)
blocks.append(out)
if i < len(self.stages) - 1:
out = self.downsample_list[i](out)
return blocks[-1:-4:-1] # 将C0, C1, C2作为返回值
损失函数的建立
# 定义上采样模块
class Upsample(fluid.dygraph.Layer):
def __init__(self, scale=2):
super(Upsample,self).__init__()
self.scale = scale
def forward(self, inputs):
# get dynamic upsample output shape
shape_nchw = fluid.layers.shape(inputs)
shape_hw = fluid.layers.slice(shape_nchw, axes=[0], starts=[2], ends=[4])
shape_hw.stop_gradient = True
in_shape = fluid.layers.cast(shape_hw, dtype='int32')
out_shape = in_shape * self.scale
out_shape.stop_gradient = True
# reisze by actual_shape
out = fluid.layers.resize_nearest(
input=inputs, scale=self.scale, actual_shape=out_shape)
return out
# 定义YOLO-V3模型
class YOLOv3(fluid.dygraph.Layer):
def __init__(self, num_classes=7, is_train=True):
super(YOLOv3,self).__init__()
self.is_train = is_train
self.num_classes = num_classes
# 提取图像特征的骨干代码
self.block = DarkNet53_conv_body(
is_test = not self.is_train)
self.block_outputs = []
self.yolo_blocks = []
self.route_blocks_2 = []
# 生成3个层级的特征图P0, P1, P2
for i in range(3):
# 添加从ci生成ri和ti的模块
yolo_block = self.add_sublayer(
"yolo_detecton_block_%d" % (i),
YoloDetectionBlock(
ch_in=512//(2**i)*2 if i==0 else 512//(2**i)*2 + 512//(2**i),
ch_out = 512//(2**i),
is_test = not self.is_train))
self.yolo_blocks.append(yolo_block)
num_filters = 3 * (self.num_classes + 5)
# 添加从ti生成pi的模块,这是一个Conv2D操作,输出通道数为3 * (num_classes + 5)
block_out = self.add_sublayer(
"block_out_%d" % (i),
Conv2D(num_channels=512//(2**i)*2,
num_filters=num_filters,
filter_size=1,
stride=1,
padding=0,
act=None,
param_attr=ParamAttr(
initializer=fluid.initializer.Normal(0., 0.02)),
bias_attr=ParamAttr(
initializer=fluid.initializer.Constant(0.0),
regularizer=L2Decay(0.))))
self.block_outputs.append(block_out)
if i < 2:
# 对ri进行卷积
route = self.add_sublayer("route2_%d"%i,
ConvBNLayer(ch_in=512//(2**i),
ch_out=256//(2**i),
filter_size=1,
stride=1,
padding=0,
is_test=(not self.is_train)))
self.route_blocks_2.append(route)
# 将ri放大以便跟c_{i+1}保持同样的尺寸
self.upsample = Upsample()
def forward(self, inputs):
outputs = []
blocks = self.block(inputs)
for i, block in enumerate(blocks):
if i > 0:
# 将r_{i-1}经过卷积和上采样之后得到特征图,与这一级的ci进行拼接
block = fluid.layers.concat(input=[route, block], axis=1)
# 从ci生成ti和ri
route, tip = self.yolo_blocks[i](block)
# 从ti生成pi
block_out = self.block_outputs[i](tip)
# 将pi放入列表
outputs.append(block_out)
if i < 2:
# 对ri进行卷积调整通道数
route = self.route_blocks_2[i](route)
# 对ri进行放大,使其尺寸和c_{i+1}保持一致
route = self.upsample(route)
return outputs
def get_loss(self, outputs, gtbox, gtlabel, gtscore=None,
anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326],
anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]],
ignore_thresh=0.7,
use_label_smooth=False):
"""
使用fluid.layers.yolov3_loss,直接计算损失函数,过程更简洁,速度也更快
"""
self.losses = []
downsample = 32
for i, out in enumerate(outputs): # 对三个层级分别求损失函数
anchor_mask_i = anchor_masks[i]
loss = fluid.layers.yolov3_loss(
x=out, # out是P0, P1, P2中的一个
gt_box=gtbox, # 真实框坐标
gt_label=gtlabel, # 真实框类别
gt_score=gtscore, # 真实框得分,使用mixup训练技巧时需要,不使用该技巧时直接设置为1,形状与gtlabel相同
anchors=anchors, # 锚框尺寸,包含[w0, h0, w1, h1, ..., w8, h8]共9个锚框的尺寸
anchor_mask=anchor_mask_i, # 筛选锚框的mask,例如anchor_mask_i=[3, 4, 5],将anchors中第3、4、5个锚框挑选出来给该层级使用
class_num=self.num_classes, # 分类类别数
ignore_thresh=ignore_thresh, # 当预测框与真实框IoU > ignore_thresh,标注objectness = -1
downsample_ratio=downsample, # 特征图相对于原图缩小的倍数,例如P0是32, P1是16,P2是8
use_label_smooth=False) # 使用label_smooth训练技巧时会用到,这里没用此技巧,直接设置为False
self.losses.append(fluid.layers.reduce_mean(loss)) #reduce_mean对每张图片求和
downsample = downsample // 2 # 下一级特征图的缩放倍数会减半
return sum(self.losses) # 对每个层级求和
以上。
参考:https://aistudio.baidu.com/aistudio/projectdetail/766570