包含:《R语言基础》、《tidyverse数据清洗》、《多元统计分析》、《随机森林模型》、《回归及混合效应模型》、《结构方程模型》、《统计结果作图》七合一版本

R 语言作的开源、自由、免费等特点使其广泛应用于生物群落数据统计分析。生物群落数据多样而复杂,涉及众多统计分析方法

以生物群落数据分析中的最常用的统计方法回归和混合效应模型、多元统计分析技术及结构方程等数量分析方法为主线,通过多个来自经典研究中的实例,详细讲述各方法的R语言实现途径

主要特点为聚焦生态学研究领域,从R语言基础操作和作图、数据准备整理,到各种数量分析方法的应用情景分析,实现从数据整理到分析结果展示的完整科学研究数据分析过程,将《R语言基础》、《tidyverse数据清洗》、《多元统计分析》、《随机森林模型》、《回归及混合效应模型》、《结构方程模型》及《统计结果作图》进行了组合(7合1)

R基础及数据准备

一:R和Rstudio简介及入门和作图基础

R及Rstudio介绍:背景、软件及程序包安装、基本设置等

R语言基本操作,包括向量、矩阵、数据框及数据列表等生成和数据提取等

R语言数据文件读取、整理及存储等

R语言基础绘图(含ggplot):基本绘图、排版、发表质量绘图输出存储

R语言 微生物组 网络 复杂度指数 r语言计算生物多样性_r语言

二:R语言数据清洗-tidyverse包应用

1)tidyvese简介:tidyr、dplyr、readr、%>%等

2)文件操作:不同格式文件读取、多文件同时读取等

3)数据筛选:行筛选、列筛选、条件筛选(字符操作)等

4)数据生成:数据合并、数据拆分、新数据生成(字符操作)等

5)长宽数据转换、空值(NA)等填充及删除、分组、排序及汇总等

 

R语言 微生物组 网络 复杂度指数 r语言计算生物多样性_数据_02

三:群落数据准备及探索分析

1) 生物群落数据准备:物种组成、环境变量、物种功能属性、系统发育树等

2) 生物群落数据检查:缺失值和离群值(outliers)等-避免模型错进错出(GIGO)

3) 物种多样性计算:物种多样性(TD)、功能多样性(FD)和系统发育多样性(PD)

4) 物种相似/相异矩阵关联测度介绍

R语言 微生物组 网络 复杂度指数 r语言计算生物多样性_数据分析_03

多元统计分析

四:群落数据非约束排序-PCA、CA、PCoA、NMDS

1)生物群落数据非约束排序分析简介

2)案例1鱼类生境数据排序PCA

3)案例2鸟类物种组成数据的排序:CA、PCoA和NMDS比较

R语言 微生物组 网络 复杂度指数 r语言计算生物多样性_数据_04

五:群落数据约束排序-RDA、dbRDA、CCA、4th Corner

1) 生物群落数据约束排序简介:非对称约束排序VS对称约束排序

2) 案例1景观、斑块及生境因子蛾类群落分布的解释:RDA、dbRDA或CCA选择+变差分解

3) 案例2物种有无(0,1)数据约束排序:dbRDA

4) 案例3物种组成、物种属性及环境因子的相关分析-第四角分析(4th Corner)

R语言 微生物组 网络 复杂度指数 r语言计算生物多样性_数据_05

群落数据分组分析: 等级/非等级聚类(HC/NHC)、PERMANOVA

1) 生物群落数据的聚类及差异分析概述

2) 案例1鸟类生境数据的等级和非等级聚类:KMEANS和HCLUST

3) 案例2乌龟适宜生境差异检验(2组比较)及解释:PERMANOVA、MRPP、ANOSIM及Dispersion test

4) 案例3环境梯度下微生物组成差异分析(多组比较)及解释:MRPP及Dispersion Test

5)案例4 药物对肠道微生物群落影响:PCoA+PERMANOVA

R语言 微生物组 网络 复杂度指数 r语言计算生物多样性_r语言_06

机器学习

 七:群落数据随机森林(Random Forest)模型-分类VS回归

1) 随机森林(Random Forest)模型简介

2) 随机森林模型分析基本流程-分类VS回归

3)案例1 随机森林分类及重要变量选择:RFM-classification

4)案例2 随机森林回归模型及变量重要性评估:RFM-regression

5)案例3 物种多维形态属性与生态属性的关联关系PCA+PCoA+LDA+RFM综合案例

R语言 微生物组 网络 复杂度指数 r语言计算生物多样性_数据挖掘_07

回归及混合效应模型 

八:一般线性模型(lm)

1)基本形式、基本假设、估计方法、参数检验、模型检验

2) 案例1不同鱼类游速的回归、方差及协方差分析

3) 案例2决定海洋植食性鱼类多样性的决定因子-模型验证

4) 案例3淡水鱼丰度的环境因子的筛选-逐步回归(model selection)

R语言 微生物组 网络 复杂度指数 r语言计算生物多样性_数据分析_08

九:广义线性模型(glm)

1) 广义线性混合效应模型基本原理、建模步骤及流程

2)案例1有无(0,1)数据的逻辑斯蒂模型-二项分布

3)案例2海豹年龄与攻击行为的关系-0,1数据转化为比率数据分析

4)案例3 物种多度分布环境解释-计数数据泊松、负二项、零膨胀、零截断模型

R语言 微生物组 网络 复杂度指数 r语言计算生物多样性_数据分析_09

十:线性混合效应模型(lmm)

1) 混合效应的基本原理及分析基本流程、步骤及实现

2)案例1分层数据物种多样性决定因素-模型构建流程、模型预测及诊断

3)案例2:多因素实验(分层数据)的多重比较

 

R语言 微生物组 网络 复杂度指数 r语言计算生物多样性_r语言_10

十一:广义线性混合效应模型(glmm)

1)广义线性混合效应模型基本原理、建模步骤及流程

2)案例1蝌蚪“变态”与否(0,1)的多因素分析-逻辑斯蒂混合效应模型

3)案例2虫食种子多度影响因素的多变量分析-泊松混合效应模型 

4)广义线性混合效应模型分析计数数据及模型选择:泊松、伪泊松、负二项、零膨胀泊松、零膨胀负二项、零截断泊松及零截断负二项模型

R语言 微生物组 网络 复杂度指数 r语言计算生物多样性_数据挖掘_11

十二:空间、时间及系统发育相关回归-数据自相关(autocorrelation)分析

1) 数据自相关问题简介:时间、空间和系统发育相关介绍

2) 案例1森林植物多样性分布格局的空间自相关修正

3) 案例2不同年份鸟类多度的时间自相关修正

4) 案例3系统发育相关在虾类多度分布分析中作用

R语言 微生物组 网络 复杂度指数 r语言计算生物多样性_r语言_12

结构方程模型  

十三:结构方程模型(SEM):lavaan和piecewiseSEM-多变量直接和间接效应及因果关系

1)结构方程模型简介:定义、历史、应用、估计方法、模型可识别规则及样本量要求等

2)案例1群落物种丰富度恢复的直接及间接效应(direct and indirect effects)SEM分析基本流程-lavaan vs piecwiseSEM

3)案例2环境异质性和资源可获得性对不同演替阶段林下维管植物多样性的影响模型调整、比较、评估及结果展示

4)案例3人类活动、环境条件、物种属性对动物领域大小相对贡献(relative roles)混合模型、嵌套结构、分组分析及分类变量SEM实现

R语言 微生物组 网络 复杂度指数 r语言计算生物多样性_r语言_13

统计结果作图 

十四:群落数据及统计分析结果作图(ggplot)、排版及发表质量图输出

群落数据及统计分析结果作图数据准备:结果提取与作图数据整理

聚类分析及分组差异检验图:聚类结果图、热图(heatmap)、分组差异检验结果图

PCA、CA、PCoA及NMDS等非约束排序图:排序图和双序图(biplot)

RDA、db-RDA及CCA等约束排序图:三序图(triplot)和韦恩图(venn)

回归和混合效应模型分析结果图:散点图、箱线图、柱状图及提琴图等

结构方程模型结果图表达方式

R语言 微生物组 网络 复杂度指数 r语言计算生物多样性_数据挖掘_14