首先window的时间范围是一个自然时间范围,比如你定义了一个
TumblingEventTimeWindows.of(Time.seconds(3))
窗口,那么会生成类似如下的窗口(左闭右开):
[2018-03-03 03:30:00,2018-03-03 03:30:03)
[2018-03-03 03:30:03,2018-03-03 03:30:06)
...
[2018-03-03 03:30:57,2018-03-03 03:31:00)
当一个event time=2018-03-03 03:30:01的消息到来时,就会生成[2018-03-03 03:30:00,2018-03-03 03:30:03)这个窗口(而不是[2018-03-03 03:30:01,2018-03-03 03:30:04)这样的窗口),然后将消息buffer在这个窗口中(此时还不会触发窗口的计算),
当watermark(可以翻译成水位线,只会不断上升,不会下降,用来保证在水位线之前的数据一定都到达,org.apache.flink.streaming.api.datastream.DataStream#assignTimestampsAndWatermarks(org.apache.flink.streaming.api.functions.AssignerWithPeriodicWatermarks<T>)来定制水位线生成策略)超过窗口的endTime时,才会真正触发窗口计算逻辑,然后清除掉该窗口。这样后续再有在该窗口区间内的数据到来时(延迟到来的数据),将被丢弃不被处理。有时候我们希望可以容忍一定时间的数据延迟,我们可以通过org.apache.flink.streaming.api.datastream.WindowedStream#allowedLateness方法来指定一个允许的延迟时间,比如allowedLateness(Time.seconds(5))允许5秒延迟,还是用上面的样例距离,当watermark到达2018-03-03 03:30:03时,将不会移除窗口,但是会触发窗口计算函数,由于窗口还在,所以当还有延迟的消息时间落在该窗口范围内时,比如又有一条消息2018-03-03 03:30:02到来(已经小于水位线时间2018-03-03 03:30:03),将会再次触发窗口计算函数。
那么什么时候这个窗口会被移除后续的延迟数据将不被处理呢?比如[2018-03-03 03:30:00,2018-03-03 03:30:03)这个窗口,当允许延迟5秒时,将在watermark到达2018-03-03 03:30:08时(即[watermark-5秒=2018-03-03 03:30:03]到达窗口的endTime时),[2018-03-03 03:30:00,2018-03-03 03:30:03)这个窗口将被移除,后续再有事件时间落在该窗口的数据到来,将丢弃不处理。
附一个demo测试程序:
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.AssignerWithPeriodicWatermarks;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.watermark.Watermark;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
import java.text.SimpleDateFormat;
import java.util.Comparator;
import java.util.Date;
import java.util.LinkedList;
/**
*
* @author : xiaojun
* @since 9:47 2018/4/2
*/
public class WatermarkTest {
public static void main(String[] args) throws Exception {
//2018/3/3 3:30:0
Long baseTimestamp = 1520019000000L;
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
env.getConfig().setAutoWatermarkInterval(2000);
env.setParallelism(1);
DataStream<Tuple2<String, Long>> raw = env.socketTextStream("localhost", 9999, "\n").map(new MapFunction<String, Tuple2<String, Long>>() {
@Override
public Tuple2<String, Long> map(String value) throws Exception {
//每行输入数据形如: key1@0,key1@13等等,即在baseTimestamp的基础上加多少秒,作为当前event time
String[] tmp = value.split("@");
Long ts = baseTimestamp + Long.parseLong(tmp[1]) * 1000;
return Tuple2.of(tmp[0], ts);
}
}).assignTimestampsAndWatermarks(new MyTimestampExtractor(Time.seconds(10))); //允许10秒乱序,watermark为当前接收到的最大事件时间戳减10秒
DataStream<String> window = raw.keyBy(0)
//窗口都为自然时间窗口,而不是说从收到的消息时间为窗口开始时间来进行开窗,比如3秒的窗口,那么窗口一次是[0,3),[3,6)....[57,0),如果10秒窗口,那么[0,10),[10,20),...
.window(TumblingEventTimeWindows.of(Time.seconds(3)))
// 允许5秒延迟
//比如窗口[2018-03-03 03:30:00,2018-03-03 03:30:03),如果没有允许延迟的话,那么当watermark到达2018-03-03 03:30:03的时候,将会触发窗口函数并移除窗口,这样2018-03-03 03:30:03之前的数据再来,将被丢弃
//在允许5秒延迟的情况下,那么窗口的移除时间将到watermark为2018-03-03 03:30:08,在watermark没有到达这个时间之前,你输入2018-03-03 03:30:00这个时间,将仍然会触发[2018-03-03 03:30:00,2018-03-03 03:30:03)这个窗口的计算
.allowedLateness(Time.seconds(5))
.apply(new WindowFunction<Tuple2<String, Long>, String, Tuple, TimeWindow>() {
@Override
public void apply(Tuple tuple, TimeWindow window, Iterable<Tuple2<String, Long>> input, Collector<String> out) throws Exception {
LinkedList<Tuple2<String, Long>> data = new LinkedList<>();
for (Tuple2<String, Long> tuple2 : input) {
data.add(tuple2);
}
data.sort(new Comparator<Tuple2<String, Long>>() {
@Override
public int compare(Tuple2<String, Long> o1, Tuple2<String, Long> o2) {
return o1.f1.compareTo(o2.f1);
}
});
SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String msg = String.format("key:%s, window:[ %s , %s ), elements count:%d, elements time range:[ %s , %s ]", tuple.getField(0)
, format.format(new Date(window.getStart()))
, format.format(new Date(window.getEnd()))
, data.size()
, format.format(new Date(data.getFirst().f1))
, format.format(new Date(data.getLast().f1))
);
out.collect(msg);
}
});
window.print();
env.execute();
}
public static class MyTimestampExtractor implements AssignerWithPeriodicWatermarks<Tuple2<String, Long>> {
private static final long serialVersionUID = 1L;
/**
* The current maximum timestamp seen so far.
*/
private long currentMaxTimestamp;
/**
* The timestamp of the last emitted watermark.
*/
private long lastEmittedWatermark = Long.MIN_VALUE;
/**
* The (fixed) interval between the maximum seen timestamp seen in the records
* and that of the watermark to be emitted.
*/
private final long maxOutOfOrderness;
private SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
public MyTimestampExtractor(Time maxOutOfOrderness) {
if (maxOutOfOrderness.toMilliseconds() < 0) {
throw new RuntimeException("Tried to set the maximum allowed " +
"lateness to " + maxOutOfOrderness + ". This parameter cannot be negative.");
}
this.maxOutOfOrderness = maxOutOfOrderness.toMilliseconds();
this.currentMaxTimestamp = Long.MIN_VALUE + this.maxOutOfOrderness;
}
public long getMaxOutOfOrdernessInMillis() {
return maxOutOfOrderness;
}
@Override
public final Watermark getCurrentWatermark() {
// this guarantees that the watermark never goes backwards.
long potentialWM = currentMaxTimestamp - maxOutOfOrderness;
if (potentialWM >= lastEmittedWatermark) {
lastEmittedWatermark = potentialWM;
}
System.out.println(String.format("call getCurrentWatermark======currentMaxTimestamp:%s , lastEmittedWatermark:%s", format.format(new Date(currentMaxTimestamp)), format.format(new Date(lastEmittedWatermark))));
return new Watermark(lastEmittedWatermark);
}
@Override
public final long extractTimestamp(Tuple2<String, Long> element, long previousElementTimestamp) {
long timestamp = element.f1;
if (timestamp > currentMaxTimestamp) {
currentMaxTimestamp = timestamp;
}
return timestamp;
}
}
}
监听本地9999端口:
nc.exe -l -p 9999