飞桨PaddlePaddle课程之计算机视觉
- 计算机视觉的发展历程
- 神经网络算子
- 卷积(Convolution)
- 卷积计算
- 填充(padding)
- 步幅(stride)
- 感受野(Receptive Field)
- 池化(Pooling)
- ReLU激活函数
- 批归一化(Batch Normalization)
- 丢弃法(Dropout)
- 经典卷积神经网络
- LeNet
- AlexNet
- VGG
- GoogLeNet
- ResNet
- 学习心得
计算机视觉作为一门让机器学会如何去“看”的科学学科,具体的说,就是让机器去识别摄像机拍摄的图片或视频中的物体,检测出物体所在的位置,并对目标物体进行跟踪,从而理解并描述出图片或视频里的场景和故事,以此来模拟人脑视觉系统。因此,计算机视觉也通常被叫做机器视觉,其目的是建立能够从图像或者视频中“感知”信息的人工系统。
计算机视觉技术经过几十年的发展,已经在交通(车牌识别、道路违章抓拍)、安防(人脸闸机、小区监控)、金融(刷脸支付、柜台的自动票据识别)、医疗(医疗影像诊断)、工业生产(产品缺陷自动检测)等多个领域应用,影响或正在改变人们的日常生活和工业生产方式。未来,随着技术的不断演进,必将涌现出更多的产品应用,为我们的生活创造更大的便利和更广阔的机会。
本节将重点介绍计算机视觉的经典模型(卷积神经网络)和两个典型任务(图像分类和目标检测)。主要涵盖如下内容:
- 卷积神经网络:卷积神经网络(Convolutional Neural Networks, CNN)是计算机视觉技术最经典的模型结构。本教程主要介绍卷积神经网络的常用模块,包括:卷积、池化、激活函数、批归一化、Dropout等。
- 图像分类:介绍图像分类算法的经典模型结构,包括:LeNet、AlexNet、VGG、GoogLeNet、ResNet,并通过眼疾筛查的案例展示算法的应用。
- 目标检测:介绍目标检测YOLO-V3算法,并通过林业病虫害检测案例展示YOLO-V3算法的应用。
计算机视觉的发展历程
计算机视觉的发展历程要从生物视觉讲起。对于生物视觉的起源,目前学术界尚没有形成定论。有研究者认为最早的生物视觉形成于距今约7亿年前的水母之中,也有研究者认为生物视觉产生于距今约5亿年前寒武纪。寒武纪生物大爆发的原因一直是个未解之谜,不过可以肯定的是在寒武纪动物具有了视觉能力,捕食者可以更容易地发现猎物,被捕食者也可以更早的发现天敌的位置。视觉能力加剧了猎手和猎物之间的博弈,也催生出更加激烈的生存演化规则。视觉系统的形成有力地推动了食物链的演化,加速了生物进化过程,是生物发展史上重要的里程碑。经过几亿年的演化,目前人类的视觉系统已经具备非常高的复杂度和强大的功能,人脑中神经元数目达到了1000亿个,这些神经元通过网络互相连接,这样庞大的视觉神经网络使得我们可以很轻松的观察周围的世界
那么,如何让计算机也能像人一样看懂周围的世界呢?研究者尝试着从不同的角度去解决这个问题,由此也发展出一系列的子任务
- Image Classification: 图像分类,用于识别图像中物体的类别(如:bottle、cup、cube)
- Object Localization: 目标检测,用于检测图像中每个物体的类别,并准确标出它们的位置。
- Semantic Segmentation: 图像语义分割,用于标出图像中每个像素点所属的类别,属于同一类别的像素点用一个颜色标识。
- Instance Segmentation: 实例分割,值得注意的是,(b)中的目标检测任务只需要标注出物体位置,而(d)中的实例分割任务不仅要标注出物体位置,还需要标注出物体的外形轮廓。
在早期的图像分类任务中,通常是先人工提取图像特征,再用机器学习算法对这些特征进行分类,分类的结果强依赖于特征提取方法,往往只有经验丰富的研究者才能完成。
在这种背景下,基于神经网络的特征提取方法应运而生。Yann LeCun是最早将卷积神经网络应用到图像识别领域的,其主要逻辑是使用卷积神经网络提取图像特征,并对图像所属类别进行预测,通过训练数据不断调整网络参数,最终形成一套能自动提取图像特征并对这些特征进行分类的网络。
这一方法在手写数字识别任务上取得了极大的成功,但在接下来的时间里,却没有得到很好的发展。其主要原因一方面是数据集不完善,只能处理简单任务,在大尺寸的数据上容易发生过拟合;另一方面是硬件瓶颈,网络模型复杂时,计算速度会特别慢。
神经网络算子
卷积神经网络是目前计算机视觉中使用最普遍的模型结构。本节主要为读者介绍卷积神经网络的一些基础模块,包括:
- 卷积(Convolution)
- 池化(Pooling)
- ReLU激活函数
- 批归一化(Batch Normalization)
- 丢弃法(Dropout)
我们引入卷积神经网络进行特征提取,既能提取到相邻像素点之间的特征模式,又能保证参数的个数不随图片尺寸变化。下图是一个典型的卷积神经网络结构,多层卷积和池化层组合作用在输入图片上,在网络的最后通常会加入一系列全连接层,ReLU激活函数一般加在卷积或者全连接层的输出上,网络中通常还会加入Dropout来防止过拟合。
卷积(Convolution)
卷积计算
卷积是数学分析中的一种积分变换的方法,在图像处理中采用的是卷积的离散形式。这里需要说明的是,在卷积神经网络中,卷积层的实现方式实际上是数学中定义的互相关 (cross-correlation)运算,与数学分析中的卷积定义有所不同,这里跟其他框架和卷积神经网络的教程保持一致,都使用互相关运算作为卷积的定义。
填充(padding)
如果输入尺寸为4,卷积核大小为3时,输出尺寸为4−3+1=24-3+1=24−3+1=2。读者可以自行检查当输入图片和卷积核为其他尺寸时,上述计算式是否成立。通过多次计算我们发现,当卷积核尺寸大于1时,输出特征图的尺寸会小于输入图片尺寸。说明经过多次卷积之后尺寸会不断减小。为了避免卷积之后图片尺寸变小,通常会在图片的外围进行填充(padding)
- (a)所示:填充的大小为1,填充值为0。填充之后,输入图片尺寸从4×4变成了6×6,使用3×3的卷积核,输出图片尺寸为4×4。
- (b)所示:填充的大小为2,填充值为0。填充之后,输入图片尺寸从4×4变成了8×8,使用3×3的卷积核,输出图片尺寸为6×6。
步幅(stride)
下图中卷积核每次滑动一个像素点,这是步幅为1的特殊情况。步幅为2的卷积过程,卷积核在图片上移动时,每次移动大小为2个像素点。
当宽和高方向的步幅分别为sh和sw时,输出特征图尺寸的计算公式是:
感受野(Receptive Field)
输出特征图上每个点的数值,是由输入图片上大小为kh×kw的区域的元素与卷积核每个元素相乘再相加得到的,所以输入图像上kh×kw区域内每个元素数值的改变,都会影响输出点的像素值。我们将这个区域叫做输出特征图上对应点的感受野。感受野内每个元素数值的变动,都会影响输出点的数值变化。比如3×3卷积对应的感受野大小就是3×3。
池化(Pooling)
池化是使用某一位置的相邻输出的总体统计特征代替网络在该位置的输出,其好处是当输入数据做出少量平移时,经过池化函数后的大多数输出还能保持不变。比如:当识别一张图像是否是人脸时,我们需要知道人脸左边有一只眼睛,右边也有一只眼睛,而不需要知道眼睛的精确位置,这时候通过池化某一片区域的像素点来得到总体统计特征会显得很有用。由于池化之后特征图会变得更小,如果后面连接的是全连接层,能有效的减小神经元的个数,节省存储空间并提高计算效率。 将一个2×2的区域池化成一个像素点。通常有两种方法,平均池化和最大池化。
- (a):平均池化。这里使用大小为2×2的池化窗口,每次移动的步幅为2,对池化窗口覆盖区域内的像素取平均值,得到相应的输出特征图的像素值。
- (b):最大池化。对池化窗口覆盖区域内的像素取最大值,得到输出特征图的像素值。当池化窗口在图片上滑动时,会得到整张输出特征图。池化窗口的大小称为池化大小,用kh×kw表示。在卷积神经网络中用的比较多的是窗口大小为2×2,步幅为2的池化。
与卷积核类似,池化层的输出特征图大小为:
ReLU激活函数
网络结构中,普遍使用Sigmoid函数做激活函数。在神经网络发展的早期,Sigmoid函数用的比较多,而目前用的较多的激活函数是ReLU。这是因为Sigmoid函数在反向传播过程中,容易造成梯度的衰减。让我们仔细观察Sigmoid函数的形式,就能发现这一问题。
Sigmoid激活函数定义如下:
ReLU激活函数的定义如下:
# ReLU和Sigmoid激活函数示意图
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
plt.figure(figsize=(10, 5))
# 创建数据x
x = np.arange(-10, 10, 0.1)
# 计算Sigmoid函数
s = 1.0 / (1 + np.exp(0. - x))
# 计算ReLU函数
y = np.clip(x, a_min=0., a_max=None)
#####################################
# 以下部分为画图代码
f = plt.subplot(121)
plt.plot(x, s, color='r')
currentAxis=plt.gca()
plt.text(-9.0, 0.9, r'$y=Sigmoid(x)$', fontsize=13)
currentAxis.xaxis.set_label_text('x', fontsize=15)
currentAxis.yaxis.set_label_text('y', fontsize=15)
f = plt.subplot(122)
plt.plot(x, y, color='g')
plt.text(-3.0, 9, r'$y=ReLU(x)$', fontsize=13)
currentAxis=plt.gca()
currentAxis.xaxis.set_label_text('x', fontsize=15)
currentAxis.yaxis.set_label_text('y', fontsize=15)
plt.show()
批归一化(Batch Normalization)
批归一化方法方法(Batch Normalization,BatchNorm)是由Ioffe和Szegedy于2015年提出的,已被广泛应用在深度学习中,其目的是对神经网络中间层的输出进行标准化处理,使得中间层的输出更加稳定。
通常我们会对神经网络的数据进行标准化处理,处理后的样本数据集满足均值为0,方差为1的统计分布,这是因为当输入数据的分布比较固定时,有利于算法的稳定和收敛。对于深度神经网络来说,由于参数是不断更新的,即使输入数据已经做过标准化处理,但是对于比较靠后的那些层,其接收到的输入仍然是剧烈变化的,通常会导致数值不稳定,模型很难收敛。BatchNorm能够使神经网络中间层的输出变得更加稳定,并有如下三个优点:
- 使学习快速进行(能够使用较大的学习率)
- 降低模型对初始值的敏感性
- 从一定程度上抑制过拟合
BatchNorm主要思路是在训练时按mini-batch为单位,对神经元的数值进行归一化,使数据的分布满足均值为0,方差为1。具体计算过程如下:
- 计算mini-batch内样本的均值
- 计算mini-batch内样本的方差
- 计算标准化之后的输出
丢弃法(Dropout)
丢弃法(Dropout)是深度学习中一种常用的抑制过拟合的方法,其做法是在神经网络学习过程中,随机删除一部分神经元。训练时,随机选出一部分神经元,将其输出设置为0,这些神经元将不对外传递信号。
下图是Dropout示意图,左边是完整的神经网络,右边是应用了Dropout之后的网络结构。应用Dropout之后,会将标了×\times×的神经元从网络中删除,让它们不向后面的层传递信号。在学习过程中,丢弃哪些神经元是随机决定,因此模型不会过度依赖某些神经元,能一定程度上抑制过拟合。
经典卷积神经网络
图像分类是根据图像的语义信息对不同类别图像进行区分,是计算机视觉的核心,是物体检测、图像分割、物体跟踪、行为分析、人脸识别等其他高层次视觉任务的基础。图像分类在许多领域都有着广泛的应用,如:安防领域的人脸识别和智能视频分析等,交通领域的交通场景识别,互联网领域基于内容的图像检索和相册自动归类,医学领域的图像识别等。
上一节主要介绍了卷积神经网络常用的一些基本模块,本节将基于数据集对图像分类领域的经典卷积神经网络进行剖析,介绍如何应用这些基础模块构建卷积神经网络,解决图像分类问题。涵盖如下卷积神经网络:
- LeNet:Yan LeCun等人于1998年第一次将卷积神经网络应用到图像分类任务上[1],在手写数字识别任务上取得了巨大成功。
- AlexNet:Alex Krizhevsky等人在2012年提出了AlexNet[2], 并应用在大尺寸图片数据集ImageNet上,获得了2012年ImageNet比赛冠军(ImageNet Large Scale Visual Recognition Challenge,ILSVRC)。
- VGG:Simonyan和Zisserman于2014年提出了VGG网络结构[3],是当前最流行的卷积神经网络之一,由于其结构简单、应用性极强而深受广大研究者欢迎。
- GoogLeNet:Christian Szegedy等人在2014提出了GoogLeNet[4],并取得了2014年ImageNet比赛冠军。
- ResNet:Kaiming He等人在2015年提出了ResNet[5],通过引入残差模块加深网络层数,在ImagNet数据集上的错误率降低到3.6%,超越了人眼识别水平。ResNet的设计思想深刻地影响了后来的深度神经网络的设计。
LeNet
LeNet是最早的卷积神经网络之一[1]。1998年,Yan LeCun第一次将LeNet卷积神经网络应用到图像分类上,在手写数字识别任务中取得了巨大成功。LeNet通过连续使用卷积和池化层的组合提取图像特征,其架构如 图1 所示,这里展示的是作者论文中的LeNet-5模型:
- 第一模块:包含5×5的6通道卷积和2×2的池化。卷积提取图像中包含的特征模式(激活函数使用sigmoid),图像尺寸从32减小到28。经过池化层可以降低输出特征图对空间位置的敏感性,图像尺寸减到14。
- 第二模块:和第一模块尺寸相同,通道数由6增加为16。卷积操作使图像尺寸减小到10,经过池化后变成5。
- 第三模块:包含5×5的120通道卷积。卷积之后的图像尺寸减小到1,但是通道数增加为120。将经过第3次卷积提取到的特征图输入到全连接层。第一个全连接层的输出神经元的个数是64,第二个全连接层的输出神经元个数是分类标签的类别数,对于手写数字识别其大小是10。然后使用Softmax激活函数即可计算出每个类别的预测概率。
AlexNet
随着技术的进步和发展,计算机的算力越来越强大,尤其是在GPU并行计算能力的推动下,复杂神经网络的计算也变得更加容易实施。另一方面,互联网上涌现出越来越多的数据,极大的丰富了数据库。同时也有越来越多的研究人员开始专门针对神经网络做算法和模型的优化,Alex Krizhevsky等人提出的AlexNet以很大优势获得了2012年ImageNet比赛的冠军。这一成果极大的激发了产业界对神经网络的兴趣,开创了使用深度神经网络解决图像问题的途径,随后也在这一领域涌现出越来越多的优秀成果。
AlexNet与LeNet相比,具有更深的网络结构,包含5层卷积和3层全连接,同时使用了如下三种方法改进模型的训练过程:
- 数据增广:深度学习中常用的一种处理方式,通过对训练随机加一些变化,比如平移、缩放、裁剪、旋转、翻转或者增减亮度等,产生一系列跟原始图片相似但又不完全相同的样本,从而扩大训练数据集。通过这种方式,可以随机改变训练样本,避免模型过度依赖于某些属性,能从一定程度上抑制过拟合。
- 使用Dropout抑制过拟合
- 使用ReLU激活函数减少梯度消失现象
VGG
VGG是当前最流行的CNN模型之一,2014年由Simonyan和Zisserman提出,其命名来源于论文作者所在的实验室Visual Geometry Group。AlexNet模型通过构造多层网络,取得了较好的效果,但是并没有给出深度神经网络设计的方向。VGG通过使用一系列大小为3x3的小尺寸卷积核和池化层构造深度卷积神经网络,并取得了较好的效果。VGG模型因为结构简单、应用性极强而广受研究者欢迎,尤其是它的网络结构设计方法,为构建深度神经网络提供了方向。
下图是VGG-16的网络结构示意图,有13层卷积和3层全连接层。VGG网络的设计严格使用3×3的卷积层和池化层来提取特征,并在网络的最后面使用三层全连接层,将最后一层全连接层的输出作为分类的预测。 在VGG中每层卷积将使用ReLU作为激活函数,在全连接层之后添加dropout来抑制过拟合。使用小的卷积核能够有效地减少参数的个数,使得训练和测试变得更加有效。比如使用两层3×3卷积层,可以得到感受野为5的特征图,而比使用5×5的卷积层需要更少的参数。由于卷积核比较小,可以堆叠更多的卷积层,加深网络的深度,这对于图像分类任务来说是有利的。VGG模型的成功证明了增加网络的深度,可以更好的学习图像中的特征模式。
GoogLeNet
GoogLeNet是2014年ImageNet比赛的冠军,它的主要特点是网络不仅有深度,还在横向上具有“宽度”。由于图像信息在空间尺寸上的巨大差异,如何选择合适的卷积核来提取特征就显得比较困难了。空间分布范围更广的图像信息适合用较大的卷积核来提取其特征;而空间分布范围较小的图像信息则适合用较小的卷积核来提取其特征。为了解决这个问题,GoogLeNet提出了一种被称为Inception模块的方案。
**说明**:
- Google的研究人员为了向LeNet致敬,特地将模型命名为GoogLeNet
(a)是Inception模块的设计思想,使用3个不同大小的卷积核对输入图片进行卷积操作,并附加最大池化,将这4个操作的输出沿着通道这一维度进行拼接,构成的输出特征图将会包含经过不同大小的卷积核提取出来的特征。Inception模块采用多通路(multi-path)的设计形式,每个支路使用不同大小的卷积核,最终输出特征图的通道数是每个支路输出通道数的总和,这将会导致输出通道数变得很大,尤其是使用多个Inception模块串联操作的时候,模型参数量会变得非常大。为了减小参数量,Inception模块使用了图(b)中的设计方式,在每个3x3和5x5的卷积层之前,增加1x1的卷积层来控制输出通道数;在最大池化层后面增加1x1卷积层减小输出通道数。基于这一设计思想,形成了上图(b)中所示的结构。
GoogLeNet的架构如下图所示,在主体卷积部分中使用5个模块(block),每个模块之间使用步幅为2的3 ×3最大池化层来减小输出高宽。
- 第一模块使用一个64通道的7 × 7卷积层。
- 第二模块使用2个卷积层:首先是64通道的1 × 1卷积层,然后是将通道增大3倍的3 × 3卷积层。
- 第三模块串联2个完整的Inception块。
- 第四模块串联了5个Inception块。
- 第五模块串联了2 个Inception块。
- 第五模块的后面紧跟输出层,使用全局平均池化层来将每个通道的高和宽变成1,最后接上一个输出个数为标签类别数的全连接层。
ResNet
ResNet是2015年ImageNet比赛的冠军,将识别错误率降低到了3.6%,这个结果甚至超出了正常人眼识别的精度。
通过前面几个经典模型学习,我们可以发现随着深度学习的不断发展,模型的层数越来越多,网络结构也越来越复杂。那么是否加深网络结构,就一定会得到更好的效果呢?从理论上来说,假设新增加的层都是恒等映射,只要原有的层学出跟原模型一样的参数,那么深模型结构就能达到原模型结构的效果。换句话说,原模型的解只是新模型的解的子空间,在新模型解的空间里应该能找到比原模型解对应的子空间更好的结果。但是实践表明,增加网络的层数之后,训练误差往往不降反升。
Kaiming He等人提出了残差网络ResNet来解决上述问题,其基本思想如下图所示。
- (a):表示增加网络的时候,将x映射成y=F(x)输出。
- (b):对图6(a)作了改进,输出y=F(x)+x。这时不是直接学习输出特征y的表示,而是学习y−x。
- 如果想学习出原模型的表示,只需将F(x)的参数全部设置为0,则y=x是恒等映射。
- F(x)=y−x也叫做残差项,如果x→y的映射接近恒等映射,(b)中通过学习残差项也比(a)学习完整映射形式更加容易。
(b)的结构是残差网络的基础,这种结构也叫做残差块(Residual block)。输入x通过跨层连接,能更快的向前传播数据,或者向后传播梯度。残差块的具体设计方案如图所示,这种设计方案也成称作瓶颈结构(BottleNeck)。
下图表示出了ResNet-50的结构,一共包含49层卷积和1层全连接,所以被称为ResNet-50。
ResNet-50的具体实现如下代码所示:
# -*- coding:utf-8 -*-
# ResNet模型代码
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.base import to_variable
# ResNet中使用了BatchNorm层,在卷积层的后面加上BatchNorm以提升数值稳定性
# 定义卷积批归一化块
class ConvBNLayer(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
act=None):
"""
num_channels, 卷积层的输入通道数
num_filters, 卷积层的输出通道数
stride, 卷积层的步幅
groups, 分组卷积的组数,默认groups=1不使用分组卷积
act, 激活函数类型,默认act=None不使用激活函数
"""
super(ConvBNLayer, self).__init__()
# 创建卷积层
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
bias_attr=False)
# 创建BatchNorm层
self._batch_norm = BatchNorm(num_filters, act=act)
def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
# 定义残差块
# 每个残差块会对输入图片做三次卷积,然后跟输入图片进行短接
# 如果残差块中第三次卷积输出特征图的形状与输入不一致,则对输入图片做1x1卷积,将其输出形状调整成一致
class BottleneckBlock(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
stride,
shortcut=True):
super(BottleneckBlock, self).__init__()
# 创建第一个卷积层 1x1
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu')
# 创建第二个卷积层 3x3
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=stride,
act='relu')
# 创建第三个卷积 1x1,但输出通道数乘以4
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 4,
filter_size=1,
act=None)
# 如果conv2的输出跟此残差块的输入数据形状一致,则shortcut=True
# 否则shortcut = False,添加1个1x1的卷积作用在输入数据上,使其形状变成跟conv2一致
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 4,
filter_size=1,
stride=stride)
self.shortcut = shortcut
self._num_channels_out = num_filters * 4
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
# 如果shortcut=True,直接将inputs跟conv2的输出相加
# 否则需要对inputs进行一次卷积,将形状调整成跟conv2输出一致
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=conv2)
layer_helper = LayerHelper(self.full_name(), act='relu')
return layer_helper.append_activation(y)
# 定义ResNet模型
class ResNet(fluid.dygraph.Layer):
def __init__(self, layers=50, class_dim=1):
"""
layers, 网络层数,可以是50, 101或者152
class_dim,分类标签的类别数
"""
super(ResNet, self).__init__()
self.layers = layers
supported_layers = [50, 101, 152]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(supported_layers, layers)
if layers == 50:
#ResNet50包含多个模块,其中第2到第5个模块分别包含3、4、6、3个残差块
depth = [3, 4, 6, 3]
elif layers == 101:
#ResNet101包含多个模块,其中第2到第5个模块分别包含3、4、23、3个残差块
depth = [3, 4, 23, 3]
elif layers == 152:
#ResNet50包含多个模块,其中第2到第5个模块分别包含3、8、36、3个残差块
depth = [3, 8, 36, 3]
# 残差块中使用到的卷积的输出通道数
num_filters = [64, 128, 256, 512]
# ResNet的第一个模块,包含1个7x7卷积,后面跟着1个最大池化层
self.conv = ConvBNLayer(
num_channels=3,
num_filters=64,
filter_size=7,
stride=2,
act='relu')
self.pool2d_max = Pool2D(
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
# ResNet的第二到第五个模块c2、c3、c4、c5
self.bottleneck_block_list = []
num_channels = 64
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(
num_channels=num_channels,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1, # c3、c4、c5将会在第一个残差块使用stride=2;其余所有残差块stride=1
shortcut=shortcut))
num_channels = bottleneck_block._num_channels_out
self.bottleneck_block_list.append(bottleneck_block)
shortcut = True
# 在c5的输出特征图上使用全局池化
self.pool2d_avg = Pool2D(pool_size=7, pool_type='avg', global_pooling=True)
# stdv用来作为全连接层随机初始化参数的方差
import math
stdv = 1.0 / math.sqrt(2048 * 1.0)
# 创建全连接层,输出大小为类别数目
self.out = Linear(input_dim=2048, output_dim=class_dim,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv)))
def forward(self, inputs):
y = self.conv(inputs)
y = self.pool2d_max(y)
for bottleneck_block in self.bottleneck_block_list:
y = bottleneck_block(y)
y = self.pool2d_avg(y)
y = fluid.layers.reshape(y, [y.shape[0], -1])
y = self.out(y)
return y
学习心得
通过本次的学习了解了计算机视觉的发展历程,同时了解了神经网络算子的计算流程,让我更加明白地理解卷积神经网络对图像的处理过程,同时了解了许多优秀性能的卷积神经网络,让我对神经网络的学习产生了强烈的兴趣,希望自己努力提高专业知识和技能,推动计算机视觉的脚步向前更进一步!