一、什么是 NumPy?
NumPy 是用于处理数组的 python 库。
它还拥有在线性代数、傅立叶变换和矩阵领域中工作的函数。
NumPy 由 Travis Oliphant 于 2005 年创建。它是一个开源项目,您可以自由使用它。
NumPy 指的是数值 Python(Numerical Python)。
为何使用 NumPy?
在 Python 中,我们有满足数组功能的列表,但是处理起来很慢。
NumPy 旨在提供一个比传统 Python 列表快 50 倍的数组对象。
NumPy 中的数组对象称为 ndarray,它提供了许多支持函数,使得利用 ndarray 非常容易。
数组在数据科学中非常常用,因为速度和资源非常重要。
数据科学:计算机科学的一个分支,研究如何存储、使用和分析数据以从中获取信息。
为什么 NumPy 比列表快?
与列表不同,NumPy 数组存储在内存中的一个连续位置,因此进程可以非常有效地访问和操纵它们。
这种行为在计算机科学中称为引用的局部性。
这是 NumPy 比列表更快的主要原因。它还经过了优化,可与最新的 CPU 体系结构一同使用。
NumPy 用哪种语言编写?
NumPy 是一个 Python 库,部分用 Python 编写,但是大多数需要快速计算的部分都是用 C 或 C ++ 编写的。
二、安装 NumPy
请使用这条命令安装它:
pip install numpy
如果此命令失败,请使用已经安装了 NumPy 的 python 发行版,例如 Anaconda、Spyder 等。
导入 NumPy
安装 NumPy 后,通过添加 import 关键字将其导入您的应用程序:
import numpy
现在,Numpy 已导入并可以使用。
import numpy
arr = numpy.array([1, 2, 3, 4, 5])
print(arr)
[1 2 3 4 5]
NumPy as np
NumPy 通常以 np 别名导入。
别名:在 Python 中,别名是用于引用同一事物的替代名称。
请在导入时使用 as 关键字创建别名:
import numpy as np
现在,可以将 NumPy 包称为 np 而不是 numpy。
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print(arr)
[1 2 3 4 5]
检查 NumPy 版本
版本字符串存储在 _version_ 属性中。
import numpy as np
print(np.__version__)
1.15.4
三、创建 NumPy ndarray 对象
NumPy 用于处理数组。 NumPy 中的数组对象称为 ndarray。
我们可以使用 array() 函数创建一个 NumPy ndarray 对象。
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print(arr)
print(type(arr))
[1 2 3 4 5]
print(type(arr))
type():这个内置的 Python 函数告诉我们传递给它的对象的类型。像上面的代码一样,它表明 arr 是 numpy.ndarray 类型。
要创建 ndarray,我们可以将列表、元组或任何类似数组的对象传递给 array() 方法,然后它将被转换为 ndarray:
使用元组创建 NumPy 数组:
import numpy as np
arr = np.array((1, 2, 3, 4, 5))
print(arr)
[1 2 3 4 5]
数组中的维
数组中的维是数组深度(嵌套数组)的一个级别。
**嵌套数组:**指的是将数组作为元素的数组。
0-D 数组
0-D 数组,或标量(Scalars),是数组中的元素。数组中的每个值都是一个 0-D 数组。
用值 61 创建 0-D 数组:
import numpy as np
arr = np.array(61)
print(arr)
1-D 数组
其元素为 0-D 数组的数组,称为一维或 1-D 数组。
这是最常见和基础的数组。
创建包含值 1、2、3、4、5、6 的 1-D 数组:
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6])
print(arr)
[1 2 3 4 5 6]
2-D 数组
其元素为 1-D 数组的数组,称为 2-D 数组。
它们通常用于表示矩阵或二阶张量。
NumPy 有一个专门用于矩阵运算的完整子模块 numpy.mat。
创建包含值 1、2、3 和 4、5、6 两个数组的 2-D 数组:
import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr)
[[1 2 3]
[4 5 6]]
3-D 数组
其元素为 2-D 数组的数组,称为 3-D 数组。
用两个 2-D 数组创建一个 3-D 数组,这两个数组均包含值 1、2、3 和 4、5、6 的两个数组:
import numpy as np
arr = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])
print(arr)
[[[1 2 3]
[4 5 6]]
[[1 2 3]
[4 5 6]]]
检查维数?
NumPy 数组提供了 ndim 属性,该属性返回一个整数,该整数会告诉我们数组有多少维。
检查数组有多少维:
import numpy as np
a = np.array(42)
b = np.array([1, 2, 3, 4, 5])
c = np.array([[1, 2, 3], [4, 5, 6]])
d = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])
print(a.ndim)
print(b.ndim)
print(c.ndim)
print(d.ndim)
0
1
2
3
更高维的数组
数组可以拥有任意数量的维。
在创建数组时,可以使用 ndmin 参数定义维数。
创建一个有 5 个维度的数组,并验证它拥有 5 个维度:
import numpy as np
arr = np.array([1, 2, 3, 4], ndmin=5)
print(arr)
print('number of dimensions :', arr.ndim)
[[[[[1 2 3 4]]]]]
number of dimensions : 5
四、访问数组元素
数组索引等同于访问数组元素。
您可以通过引用其索引号来访问数组元素。
NumPy 数组中的索引以 0 开头,这意味着第一个元素的索引为 0,第二个元素的索引为 1,以此类推。
import numpy as np
arr = np.array([1, 2, 3, 4])
print(arr[0])
1
从以下数组中获取第二个元素:
import numpy as np
arr = np.array([1, 2, 3, 4])
print(arr[1])
2
从以下数组中获取第三和第四个元素并将其相加:
import numpy as np
arr = np.array([1, 2, 3, 4])
print(arr[2] + arr[3])
7
访问 2-D 数组
要访问二维数组中的元素,我们可以使用逗号分隔的整数表示元素的维数和索引。
访问第一维中的第二个元素:
import numpy as np
arr = np.array([[1,2,3,4,5], [6,7,8,9,10]])
print('2nd element on 1st dim: ', arr[0, 1])
2nd element on 1st dim: 2
访问第二维中的第五个元素:
import numpy as np
arr = np.array([[1,2,3,4,5], [6,7,8,9,10]])
print('5th element on 2nd dim: ', arr[1, 4])
5th element on 2nd dim: 10
访问 3-D 数组
要访问 3-D 数组中的元素,我们可以使用逗号分隔的整数来表示元素的维数和索引。
访问第一个数组的第二个数组的第三个元素:
import numpy as np
arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
print(arr[0, 1, 2])
6
工作原理:
第一个数字代表第一个维度,其中包含两个数组:
[[1, 2, 3], [4, 5, 6]]
然后:
[[7, 8, 9], [10, 11, 12]]
由于我们选择了 0,所以剩下第一个数组:
[[1, 2, 3], [4, 5, 6]]
第二个数字代表第二维,它也包含两个数组:
[1, 2, 3]
然后:
[4, 5, 6]
因为我们选择了 1,所以剩下第二个数组:
[4, 5, 6]
第三个数字代表第三维,其中包含三个值:
4
5
6
由于我们选择了 2,因此最终得到第三个值:
6
负索引
使用负索引从尾开始访问数组。
打印第二个维中的的最后一个元素:
import numpy as np
arr = np.array([[1,2,3,4,5], [6,7,8,9,10]])
print('Last element from 2nd dim: ', arr[1, -1])
Last element from 2nd dim: 10
五、裁切数组
python中裁切的意思是将元素从一个给定的索引获取到另一个给定的索引。
我们像这样传递切片而不是索引:[start:end]。
我们还可以定义步长,如下所示:[start:end:step]。
如果我们不传递 start,则将其视为 0。
如果我们不传递 end,则视为该维度内数组的长度。
如果我们不传递 step,则视为 1。
从下面的数组中裁切索引 1 到索引 5 的元素:
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7])
print(arr[1:5])
[2 3 4 5]
注释:结果包括了开始索引,但不包括结束索引。
裁切数组中索引 4 到结尾的元素:
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7])
print(arr[4:])
[5 6 7]
裁切从开头到索引 4(不包括)的元素:
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7])
print(arr[:4])
[1 2 3 4]
负裁切
使用减号运算符从末尾开始引用索引:
从末尾开始的索引 3 到末尾开始的索引 1,对数组进行裁切:
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7])
print(arr[-3:-1])
[5 6]
STEP
请使用 step 值确定裁切的步长:
从索引 1 到索引 5,返回相隔的元素:
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7])
print(arr[1:5:2])
[2 4]
返回数组中相隔的元素:
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7])
print(arr[::2])
[1 3 5 7]
裁切 2-D 数组
从第二个元素开始,对从索引 1 到索引 4(不包括)的元素进行切片:
import numpy as np
arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
print(arr[1, 1:4])
[7 8 9]
注释:请记得第二个元素的索引为 1。
从两个元素中返回索引 2:
import numpy as np
arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
print(arr[0:2, 2])
[3 8]
从两个元素裁切索引 1 到索引 4(不包括),这将返回一个 2-D 数组:
import numpy as np
arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
print(arr[0:2, 1:4])
[[2 3 4]
[7 8 9]]
六、Python 中的数据类型
默认情况下,Python 拥有以下数据类型:
- strings - 用于表示文本数据,文本用引号引起来。例如 “ABCD”。
- integer - 用于表示整数。例如 1, -2, -3。
- float - 用于表示实数。例如 1.2, 42.42。
- boolean - 用于表示 True 或 False。
- complex - 用于表示复平面中的数字。例如 1.0 + 2.0j,1.5 + 2.5j。
NumPy 中的数据类型
NumPy 有一些额外的数据类型,并通过一个字符引用数据类型,例如 i 代表整数,u 代表无符号整数等。
以下是 NumPy 中所有数据类型的列表以及用于表示它们的字符。
- i - 整数
- b - 布尔
- u - 无符号整数
- f - 浮点
- c - 复合浮点数
- m - timedelta
- M - datetime
- O - 对象
- S - 字符串
- U - unicode 字符串
- V - 固定的其他类型的内存块 ( void )
检查数组的数据类型
NumPy 数组对象有一个名为 dtype 的属性,该属性返回数组的数据类型:
获取数组对象的数据类型:
import numpy as np
arr = np.array([1, 2, 3, 4])
print(arr.dtype)
int32
获取包含字符串的数组的数据类型:
import numpy as np
arr = np.array(['apple', 'banana', 'cherry'])
print(arr.dtype)
<U6
用已定义的数据类型创建数组
我们使用 array() 函数来创建数组,该函数可以使用可选参数:dtype,它允许我们定义数组元素的预期数据类型:
用数据类型字符串创建数组:
import numpy as np
arr = np.array([1, 2, 3, 4], dtype='S')
print(arr)
print(arr.dtype)
[b’1’ b’2’ b’3’ b’4’]
|S1
对于 i、u、f、S 和 U,我们也可以定义大小。
创建数据类型为 4 字节整数的数组:
import numpy as np
arr = np.array([1, 2, 3, 4], dtype='i4')
print(arr)
print(arr.dtype)
[1 2 3 4]
int32
假如值无法转换会怎样?
如果给出了不能强制转换元素的类型,则 NumPy 将引发 ValueError。
ValueError:在 Python 中,如果传递给函数的参数的类型是非预期或错误的,则会引发 ValueError。
无法将非整数字符串(比如 ‘a’)转换为整数(将引发错误):
import numpy as np
arr = np.array(['a', '2', '3'], dtype='i')
ValueError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_52696\1513465246.py in <module>
1 import numpy as np
2
----> 3 arr = np.array([‘a’, ‘2’, ‘3’], dtype=‘i’)
ValueError: invalid literal for int() with base 10: ‘a’
转换已有数组的数据类型
更改现有数组的数据类型的最佳方法,是使用 astype() 方法复制该数组。
astype() 函数创建数组的副本,并允许您将数据类型指定为参数。
数据类型可以使用字符串指定,例如 ‘f’ 表示浮点数,‘i’ 表示整数等。或者您也可以直接使用数据类型,例如 float 表示浮点数,int 表示整数。
通过使用 ‘i’ 作为参数值,将数据类型从浮点数更改为整数:
import numpy as np
arr = np.array([1.1, 2.1, 3.1])
newarr = arr.astype('i')
print(newarr)
print(newarr.dtype)
[1 2 3]
int32
通过使用 int 作为参数值,将数据类型从浮点数更改为整数:
import numpy as np
arr = np.array([1.1, 2.1, 3.1])
newarr = arr.astype(int)
print(newarr)
print(newarr.dtype)
[1 2 3]
实例
将数据类型从整数更改为布尔值:
import numpy as np
arr = np.array([1, 0, 3])
newarr = arr.astype(bool)
print(newarr)
print(newarr.dtype)
[ True False True]
bool
七、副本和视图之间的区别
副本和数组视图之间的主要区别在于副本是一个新数组,而这个视图只是原始数组的视图。
副本拥有数据,对副本所做的任何更改都不会影响原始数组,对原始数组所做的任何更改也不会影响副本。
视图不拥有数据,对视图所做的任何更改都会影响原始数组,而对原始数组所做的任何更改都会影响视图。
副本:
进行复制,更改原始数组并显示两个数组:
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
x = arr.copy()
arr[0] = 61
print(arr)
print(x)
[61 2 3 4 5]
[1 2 3 4 5]
该副本不应受到对原始数组所做更改的影响。
视图:
创建视图,更改原始数组,然后显示两个数组:
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
x = arr.view()
arr[0] = 61
print(arr)
print(x)
[61 2 3 4 5]
[61 2 3 4 5]
视图应该受到对原始数组所做更改的影响。
在视图中进行更改:
创建视图,更改视图,并显示两个数组:
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
x = arr.view()
x[0] = 31
print(arr)
print(x)
[31 2 3 4 5]
[31 2 3 4 5]
原始数组应该受到对视图所做更改的影响。
检查数组是否拥有数据
如上所述,副本拥有数据,而视图不拥有数据,但是我们如何检查呢?
每个 NumPy 数组都有一个属性 base,如果该数组拥有数据,则这个 base 属性返回 None。
否则,base 属性将引用原始对象。
打印 base 属性的值以检查数组是否拥有自己的数据:
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
x = arr.copy()
y = arr.view()
print(x.base)
print(y.base)
None
[1 2 3 4 5]
副本返回 None。
视图返回原始数组。
八、数组重塑
重塑意味着更改数组的形状。
数组的形状是每个维中元素的数量。
通过重塑,我们可以添加或删除维度或更改每个维度中的元素数量。
从 1-D 重塑为 2-D
将以下具有 12 个元素的 1-D 数组转换为 2-D 数组。
最外面的维度将有 4 个数组,每个数组包含 3 个元素:
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
newarr = arr.reshape(4, 3)
print(newarr)
[[ 1 2 3]
[ 4 5 6]
[ 7 8 9]
[10 11 12]]
从 1-D 重塑为 3-D
将以下具有 12 个元素的 1-D 数组转换为 3-D 数组。
最外面的维度将具有 2 个数组,其中包含 3 个数组,每个数组包含 2 个元素:
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
newarr = arr.reshape(2, 3, 2)
print(newarr)
[[[ 1 2]
[ 3 4]
[ 5 6]]
[[ 7 8]
[ 9 10]
[11 12]]]
我们可以重塑成任何形状吗?
是的,只要重塑所需的元素在两种形状中均相等。
我们可以将 8 元素 1D 数组重塑为 2 行 2D 数组中的 4 个元素,但是我们不能将其重塑为 3 元素 3 行 2D 数组,因为这将需要 3x3 = 9 个元素。
尝试将具有 8 个元素的 1D 数组转换为每个维度中具有 3 个元素的 2D 数组(将产生错误):
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])
newarr = arr.reshape(3, 3)
print(newarr)
ValueError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_1376\1520178591.py in <module>
3 arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])
4
----> 5 newarr = arr.reshape(3, 3)
6
7 print(newarr)
ValueError: cannot reshape array of size 8 into shape (3,3)
返回副本还是视图?
检查返回的数组是副本还是视图:
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])
print(arr.reshape(2, 4).base)
[1 2 3 4 5 6 7 8]
上面的例子返回原始数组,因此它是一个视图。
未知的维
您可以使用一个“未知”维度。
这意味着您不必在 reshape 方法中为维度之一指定确切的数字。
传递 -1 作为值,NumPy 将为您计算该数字。
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])
newarr = arr.reshape(2, 2, -1)
print(newarr)
[[[1 2]
[3 4]]
[[5 6]
[7 8]]]
**注释:**我们不能将 -1 传递给一个以上的维度。
展平数组
展平数组(Flattening the arrays)是指将多维数组转换为 1D 数组。
我们可以使用 reshape(-1) 来做到这一点。
把数组转换为 1D 数组:
import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6]])
newarr = arr.reshape(-1)
print(newarr)
[1 2 3 4 5 6]
九、数组迭代
迭代意味着逐一遍历元素。
当我们在 numpy 中处理多维数组时,可以使用 python 的基本 for 循环来完成此操作。
如果我们对 1-D 数组进行迭代,它将逐一遍历每个元素。
迭代以下一维数组的元素:
import numpy as np
arr = np.array([1, 2, 3])
for x in arr:
print(x)
1
2
3
迭代 2-D 数组
在 2-D 数组中,它将遍历所有行。
迭代以下二维数组的元素:
import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6]])
for x in arr:
print(x)
[1 2 3]
[4 5 6]
如果我们迭代一个 n-D 数组,它将逐一遍历第 n-1 维。
如需返回实际值、标量,我们必须迭代每个维中的数组。
迭代 2-D 数组的每个标量元素:
import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6]])
for x in arr:
for y in x:
print(y)
1
2
3
4
5
6
迭代 3-D 数组
在 3-D 数组中,它将遍历所有 2-D 数组。
迭代以下 3-D 数组的元素:
import numpy as np
arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
for x in arr:
print(x)
[[1 2 3]
[4 5 6]]
[[ 7 8 9]
[10 11 12]]
要返回实际值、标量,我们必须迭代每个维中的数组。
迭代到标量:
import numpy as np
arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
for x in arr:
for y in x:
for z in y:
print(z)
1
2
3
4
5
6
7
8
9
10
11
12
使用 nditer() 迭代数组
函数 nditer() 是一个辅助函数,从非常基本的迭代到非常高级的迭代都可以使用。它解决了我们在迭代中面临的一些基本问题,让我们通过例子进行介绍。
迭代每个标量元素
在基本的 for 循环中,迭代遍历数组的每个标量,我们需要使用 n 个 for 循环,对于具有高维数的数组可能很难编写。
遍历以下 3-D 数组:
import numpy as np
arr = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
for x in np.nditer(arr):
print(x)
1
2
3
4
5
6
7
8
迭代不同数据类型的数组
我们可以使用 op_dtypes 参数,并传递期望的数据类型,以在迭代时更改元素的数据类型。
NumPy 不会就地更改元素的数据类型(元素位于数组中),因此它需要一些其他空间来执行此操作,该额外空间称为 buffer,为了在 nditer() 中启用它,我们传参 flags=[‘buffered’]。
以字符串形式遍历数组:
import numpy as np
arr = np.array([1, 2, 3])
for x in np.nditer(arr, flags=['buffered'], op_dtypes=['S']):
print(x)
b’1’
b’2’
b’3’
使用 ndenumerate() 进行枚举迭代
枚举是指逐一提及事物的序号。
有时,我们在迭代时需要元素的相应索引,对于这些用例,可以使用 ndenumerate() 方法。
枚举以下 1D 数组元素:
import numpy as np
arr = np.array([1, 2, 3])
for idx, x in np.ndenumerate(arr):
print(idx, x)
(0,) 1
(1,) 2
(2,) 3
实例
枚举以下 2D 数组元素:
import numpy as np
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
for idx, x in np.ndenumerate(arr):
print(idx, x)
(0, 0) 1
(0, 1) 2
(0, 2) 3
(0, 3) 4
(1, 0) 5
(1, 1) 6
(1, 2) 7
(1, 3) 8
十、连接 NumPy 数组
连接意味着将两个或多个数组的内容放在单个数组中。
在 SQL 中,我们基于键来连接表,而在 NumPy 中,我们按轴连接数组。
我们传递了一系列要与轴一起连接到 concatenate() 函数的数组。如果未显式传递轴,则将其视为 0。
连接两个数组:
import numpy as np
arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
arr = np.concatenate((arr1, arr2))
print(arr)
[1 2 3 4 5 6]
沿着行 (axis=1) 连接两个 2-D 数组:
import numpy as np
arr1 = np.array([[1, 2], [3, 4]])
arr2 = np.array([[5, 6], [7, 8]])
arr = np.concatenate((arr1, arr2), axis=1)
print(arr)
[[1 2 5 6]
[3 4 7 8]]
十一、拆分 NumPy 数组
拆分是连接的反向操作。
连接(Joining)是将多个数组合并为一个,拆分(Spliting)将一个数组拆分为多个。
我们使用 array_split() 分割数组,将要分割的数组和分割数传递给它。
将数组分为 3 部分:
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6])
newarr = np.array_split(arr, 3)
print(newarr)
[array([1, 2]), array([3, 4]), array([5, 6])]
注释:返回值是一个包含三个数组的数组。
如果数组中的元素少于要求的数量,它将从末尾进行相应调整。
将数组分为 4 部分:
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6])
newarr = np.array_split(arr, 4)
print(newarr)
[array([1, 2]), array([3, 4]), array([5]), array([6])]
**提示:**我们也有 split() 方法可用,但是当源数组中的元素较少用于拆分时,它将不会调整元素,如上例那样,array_split() 正常工作,但 split() 会失败。
拆分为数组
array_split() 方法的返回值是一个包含每个分割的数组。
如果将一个数组拆分为 3 个数组,则可以像使用任何数组元素一样从结果中访问它们:
访问拆分的数组:
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6])
newarr = np.array_split(arr, 3)
print(newarr[0])
print(newarr[1])
print(newarr[2])
[1 2]
[3 4]
[5 6]
分割二维数组
拆分二维数组时,请使用相同的语法。
使用 array_split() 方法,传入要分割的数组和想要分割的数目。
把这个 2-D 拆分为三个 2-D 数组。
import numpy as np
arr = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]])
newarr = np.array_split(arr, 3)
print(arr)
print(newarr)
[[ 1 2]
[ 3 4]
[ 5 6]
[ 7 8]
[ 9 10]
[11 12]]
[array([[1, 2],
[3, 4]]), array([[5, 6],
[7, 8]]), array([[ 9, 10],
[11, 12]])]
十二、搜索数组
您可以在数组中搜索(检索)某个值,然后返回获得匹配的索引。
要搜索数组,请使用 where() 方法。
查找值为 4 的索引:
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 4, 4])
x = np.where(arr == 4)
print(x)
(array([3, 5, 6], dtype=int64),)
查找值为偶数的索引:
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])
x = np.where(arr%2 == 0)
print(x)
(array([1, 3, 5, 7], dtype=int64),)
查找值为奇数的索引:
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])
x = np.where(arr%2 == 1)
print(x)
(array([0, 2, 4, 6], dtype=int64),)
搜索排序
有一个名为 searchsorted() 的方法,该方法在数组中执行二进制搜索,并返回将在其中插入指定值以维持搜索顺序的索引。
假定 searchsorted() 方法用于排序数组。
查找应在其中插入值 7 的索引:
import numpy as np
arr = np.array([6, 7, 8, 9])
x = np.searchsorted(arr, 7)
print(x)
1
例子解释:应该在索引 1 上插入数字 7,以保持排序顺序。
该方法从左侧开始搜索,并返回第一个索引,其中数字 7 不再大于下一个值。
从右侧搜索
默认情况下,返回最左边的索引,但是我们可以给定 side=‘right’,以返回最右边的索引。
从右边开始查找应该插入值 7 的索引:
import numpy as np
arr = np.array([6, 7, 8, 9])
x = np.searchsorted(arr, 7, side='right')
print(x)
2
例子解释:应该在索引 2 上插入数字 7,以保持排序顺序。
该方法从右边开始搜索,并返回第一个索引,其中数字 7 不再小于下一个值。
要搜索多个值,请使用拥有指定值的数组。
查找应在其中插入值 2、4 和 6 的索引:
import numpy as np
arr = np.array([1, 3, 5, 7])
x = np.searchsorted(arr, [2, 4, 6])
print(x)
[1 2 3]
十三、数组排序
排序是指将元素按有序顺序排列。
有序序列是拥有与元素相对应的顺序的任何序列,例如数字或字母、升序或降序。
NumPy ndarray 对象有一个名为 sort() 的函数,该函数将对指定的数组进行排序。
对数组进行排序:
import numpy as np
arr = np.array([3, 2, 0, 1])
print(np.sort(arr))
[0 1 2 3]
注释:此方法返回数组的副本,而原始数组保持不变。
您还可以对字符串数组或任何其他数据类型进行排序:
对数组以字母顺序进行排序:
import numpy as np
arr = np.array(['banana', 'cherry', 'apple'])
print(np.sort(arr))
[‘apple’ ‘banana’ ‘cherry’]
对布尔数组进行排序:
import numpy as np
arr = np.array([True, False, True])
print(np.sort(arr))
[False True True]
对 2-D 数组排序
如果在二维数组上使用 sort() 方法,则将对两个数组进行排序:
对 2-D 数组排序
import numpy as np
arr = np.array([[3, 2, 4], [5, 0, 1]])
print(np.sort(arr))
[[2 3 4]
[0 1 5]]
十四、数组过滤
从现有数组中取出一些元素并从中创建新数组称为过滤(filtering)。
在 NumPy 中,我们使用布尔索引列表来过滤数组。
布尔索引列表是与数组中的索引相对应的布尔值列表。
如果索引处的值为 True,则该元素包含在过滤后的数组中;如果索引处的值为 False,则该元素将从过滤后的数组中排除。
用索引 0 和 2、4 上的元素创建一个数组:
import numpy as np
arr = np.array([61, 62, 63, 64, 65])
x = [True, False, True, False, True]
newarr = arr[x]
print(newarr)
[61 63 65]
上例将返回 [61, 63, 65],为什么?
因为新过滤器仅包含过滤器数组有值 True 的值,所以在这种情况下,索引为 0 和 2、4。
创建过滤器数组
在上例中,我们对 True 和 False 值进行了硬编码,但通常的用途是根据条件创建过滤器数组。
创建一个仅返回大于 62 的值的过滤器数组:
import numpy as np
arr = np.array([61, 62, 63, 64, 65])
# 创建一个空列表
filter_arr = []
# 遍历 arr 中的每个元素
for element in arr:
# 如果元素大于 62,则将值设置为 True,否则为 False:
if element > 62:
filter_arr.append(True)
else:
filter_arr.append(False)
newarr = arr[filter_arr]
print(filter_arr)
print(newarr)
[False, False, True, True, True]
[63 64 65]
创建一个过滤器数组,该数组仅返回原始数组中的偶数元素:
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7])
# 创建一个空列表
filter_arr = []
# 遍历 arr 中的每个元素
for element in arr:
# 如果元素可以被 2 整除,则将值设置为 True,否则设置为 False
if element % 2 == 0:
filter_arr.append(True)
else:
filter_arr.append(False)
newarr = arr[filter_arr]
print(filter_arr)
print(newarr)
[False, True, False, True, False, True, False]
[2 4 6]
直接从数组创建过滤器
上例是 NumPy 中非常常见的任务,NumPy 提供了解决该问题的好方法。
我们可以在条件中直接替换数组而不是 iterable 变量,它会如我们期望地那样工作。
创建一个仅返回大于 62 的值的过滤器数组:
import numpy as np
arr = np.array([61, 62, 63, 64, 65])
filter_arr = arr > 62
newarr = arr[filter_arr]
print(filter_arr)
print(newarr)
[False False True True True]
[63 64 65]
创建一个过滤器数组,该数组仅返回原始数组中的偶数元素:
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7])
filter_arr = arr % 2 == 0
newarr = arr[filter_arr]
print(filter_arr)
print(newarr)
[False True False True False True False]
[2 4 6]
十五、什么是随机数?
随机数并不意味着每次都有不同的数字。随机意味着无法在逻辑上预测的事物。
伪随机和真随机
计算机在程序上工作,程序是权威的指令集。因此,这意味着必须有某种算法来生成随机数。
如果存在生成随机数的程序,则可以预测它,因此它就不是真正的随机数。
通过生成算法生成的随机数称为伪随机数。
我们可以生成真正的随机数吗?
是的。为了在我们的计算机上生成一个真正的随机数,我们需要从某个外部来源获取随机数据。外部来源通常是我们的击键、鼠标移动、网络数据等。
我们不需要真正的随机数,除非它与安全性(例如加密密钥)有关或应用的基础是随机性(例如数字轮盘赌轮)。
在本教程中,我们将使用伪随机数。
生成随机数
NumPy 提供了 random 模块来处理随机数。
生成一个 0 到 100 之间的随机整数:
from numpy import random
x = random.randint(100)
print(x)
53
生成随机浮点
random 模块的 rand() 方法返回 0 到 1 之间的随机浮点数。
生成一个 0 到 100 之间的随机浮点数:
from numpy import random
x = random.rand()
print(x)
0.38847973700502725
生成随机数组
在 NumPy 中,我们可以使用上例中的两种方法来创建随机数组。
整数
randint() 方法接受 size 参数,您可以在其中指定数组的形状。
生成一个 1-D 数组,其中包含 5 个从 0 到 100 之间的随机整数:
from numpy import random
x=random.randint(100, size=(5))
print(x)
[65 84 27 38 23]
生成有 3 行的 2-D 数组,每行包含 5 个从 0 到 100 之间的随机整数:
from numpy import random
x = random.randint(100, size=(3, 5))
print(x)
[[55 98 89 72 19]
[58 64 45 59 61]
[40 65 62 25 61]]
浮点数
rand() 方法还允许您指定数组的形状。
生成包含 5 个随机浮点数的 1-D 数组:
from numpy import random
x = random.rand(5)
print(x)
[0.5479626 0.62153442 0.58551643 0.70627722 0.41044108]
生成有 3 行的 2-D 数组,每行包含 5 个随机数:
from numpy import random
x = random.rand(3, 5)
print(x)
[[0.68104869 0.31826133 0.31965176 0.35030968 0.45555737]
[0.2235311 0.09288664 0.73314334 0.72278927 0.5847335 ]
[0.48137041 0.81143246 0.50843836 0.77316004 0.73599801]]
十六、什么是 ufuncs?
ufuncs 指的是“通用函数”(Universal Functions),它们是对 ndarray 对象进行操作的 NumPy 函数。
为什么要使用 ufuncs?
ufunc 用于在 NumPy 中实现矢量化,这比迭代元素要快得多。
它们还提供广播和其他方法,例如减少、累加等,它们对计算非常有帮助。
ufuncs 还接受其他参数,比如:
where 布尔值数组或条件,用于定义应在何处进行操作。
dtype 定义元素的返回类型。
out 返回值应被复制到的输出数组。
什么是向量化?
将迭代语句转换为基于向量的操作称为向量化。
由于现代 CPU 已针对此类操作进行了优化,因此速度更快。
对两个列表的元素进行相加:
list 1: [1, 2, 3, 4]
list 2: [4, 5, 6, 7]
一种方法是遍历两个列表,然后对每个元素求和。
如果没有 ufunc,我们可以使用 Python 的内置 zip() 方法:
x = [1, 2, 3, 4]
y = [4, 5, 6, 7]
z = []
for i, j in zip(x, y):
z.append(i + j)
print(z)
[5, 7, 9, 11]
对此,NumPy 有一个 ufunc,名为 add(x, y),它会输出相同的结果。
import numpy as np
x = [1, 2, 3, 4]
y = [4, 5, 6, 7]
z = np.add(x, y)
print(z)
[ 5 7 9 11]