在数据集小的情况下,可使用大数据集对卷积神经网络进行预训练,在dropout论文中提到,经过训练后的卷积层是一个泛化的特征提取器。在pytorch中如何将已训练完成的网络参数导入自己设计网络中使用。
本文以VGG16网络为例。网络架构如下(打对勾那个):
步骤如下:
- 下载网络已训练好的参数文件
参数模型下载地址 本文中下载文件是imagenet-vgg-verydeep-16.mat - 加载所下载模型参数(可在Debug下可视化查看)
data = scipy.io.loadmat('imagenet-vgg-verydeep-16.mat')
print(data)
输出结果
{'__header__': b'MATLAB 5.0 MAT-file, Platform: GLNXA64, Created on: Fri Sep 30 08:35:50 2016', '__version__': '1.0', '__globals__': [], 'layers': array([[array([[(array(['conv1_1'], dtype='<U7'), array(['conv'], dtype='<U4'), array([[array([[[[ 4.80015397e-01, -1.72696680e-01, 3.75577137e-02, ...,
-1.27135560e-01, -5.02991639e-02, 3.48965675e-02],
....此处省略卷积核权重数据,应为[3,3,3,64]维数据
[[-4.18516338e-01, -1.57048807e-01, -1.49133086e-01, ...,
-1.56839803e-01, -1.42874300e-01, -2.69694626e-01],
[-4.85030204e-01, 4.23195846e-02, -1.12076312e-01, ...,
-1.18306056e-01, -1.67058021e-01, -3.22241962e-01],
[-3.50096762e-01, 1.38710454e-01, -1.25339806e-01, ...,
-1.53092295e-01, -1.39917329e-01, -2.65075237e-01]]]],
dtype=float32),
array([[ 0.73429835],
[ 0.09340367],
[ 0.06775674],
[ 0.8862966 ],
....此时省略偏置权重,为[1,64]维数据
[ 1.302014 ],
[ 0.5306885 ],
[ 0.48993504]], dtype=float32)]], dtype=object), array([[ 3, 3, 3, 64]], dtype=uint8), array([[1, 1, 1, 1]], dtype=uint8), array([[1, 1]], dtype=uint8), array([[0]], dtype=uint8), array([[1]], dtype=uint8), array([], shape=(0, 0), dtype=object))]],
dtype=[('name', 'O'), ('type', 'O'), ('weights', 'O'), ('size', 'O'), ('pad', 'O'), ('stride', 'O'), ('precious', 'O'), ('dilate', 'O'), ('opts', 'O')]),
array([[(array(['relu1_1'], dtype='<U7'), array(['relu'], dtype='<U4'), array([[0]], dtype=uint8), array([], shape=(0, 0), dtype=object), array([[0]], dtype=uint8))]],
....此时省略其他层数据信息,只显示了一个conv层和relu层
从输出结果可看出加载参数文件数据结构,参数值以array存储,并将整个网络结构全部包括,conv、relu、fc,当网络结构不一致时应取自己需要的部分参数值。
3. 查看模型中的关键字信息
print(data.keys())
# dict_keys(['__header__', '__version__', '__globals__', 'layers', 'classes', 'normalization'])
# 其中'classes'是imageNet中的1000个类的对应标识和描述
# 'layers'内部是42个元素,每个元素又是1*2的结构,分别是w权值和b权值
# 'normalize',输入图像的标准化参数
- 加载权重
weights = data['layers'][0]
#weights[0][0][0][0]=['conv1_1']
#weights[0][0][0][1]=['conv']
#weights[0][0][0][2][0]=kernels, bias
此处需要自行尝试weight不同索引所代表的值,上面为本文下载文件的一些参数值的获取方式
6. 使用对应层参数对自己网络进行初始化
(1)卷积层设置是一样的才可以使用,例如下载文件中第一层卷积为 torch.nn.Conv2d(3, 64,3,1,1),若自己网络第一层卷积为torch.nn.Conv2d(1, 64,3,1,1),则不可使用
(2)参数维度方式不同,需要进行转换
matconvnet: weights are [width, height, in_channels, out_channels]
pytorchnet:weights are [out_channels,in_channels,width, height ]
(3)文件存储使用array,而网络运行中使用Tensor
维度转换代码
kernels=kernels.transpose((3,2,0,1))
bias=bias.transpose(1,0)[0] #偏置的尺寸为64,而加载的偏置尺寸为1*64
kernels=torch.Tensor(kernels)
bias=torch.Tensor(bias)
- 完整代码
import torch
from torch.autograd import Variable
from torch.nn import init
import scipy.io
from utils_.util import read_csv
import nibabel as nib
from torch import optim
# layers = (
# 'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1',
# 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
# 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3',
# 'relu3_3', 'pool3',
# 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3',
# 'relu4_3', 'pool4',
# 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3',
# 'relu5_3')
def layer(inchannel,outchannel,kernel,stride,padding):
layer = torch.nn.Sequential(
torch.nn.Conv2d(inchannel, outchannel,kernel,stride,padding),
torch.nn.ReLU()
)
return layer
def fc_layer(size_in, size_out):
layer = torch.nn.Sequential(
torch.nn.Linear(size_in, size_out),
torch.nn.Dropout(0.5),
torch.nn.ReLU()
)
return layer
class VGG(torch.nn.Module):
def __init__(self,inchannel=1,classes=3):
super(VGG,self).__init__()
self.name='VGG'
#load weight
data = scipy.io.loadmat('imagenet-vgg-verydeep-16.mat')
self.weights = data['layers'][0]
self.conv1_1=layer(inchannel,64,3,1,1)
self.conv1_2=layer(64,64,3,1,1)
self.maxpool1=torch.nn.MaxPool2d(2,2)
self.conv2_1=layer(64,128,3,1,1)
self.conv2_2 = layer(128, 128, 3, 1, 1)
self.maxpool2 = torch.nn.MaxPool2d(2, 2)
self.conv3_1 = layer(128, 256, 3, 1, 1)
self.conv3_2 = layer(256, 256, 3, 1, 1)
self.conv3_3 = layer(256, 256, 3, 1, 1)
self.maxpool3 = torch.nn.MaxPool2d(2, 2)
self.conv4_1 = layer(256, 512, 3, 1, 1)
self.conv4_2 = layer(512, 512, 3, 1, 1)
self.conv4_3 = layer(512, 512, 3, 1, 1)
self.maxpool4 = torch.nn.MaxPool2d(2, 2)
self.conv5_1 = layer(512, 512, 3, 1, 1)
self.conv5_2 = layer(512, 512, 3, 1, 1)
self.conv5_3 = layer(512, 512, 3, 1, 1)
self.maxpool5 = torch.nn.MaxPool2d(2, 2)
self.fc1=fc_layer(512*16*16,2048)
self.fc2=fc_layer(2048,1024)
self.fc3=torch.nn.Linear(1024, classes)
#网络初始化,设置计数器i,记录自己网络中第几层,然后可直接取对应参数值
i=0
for m in self.children():
if m.__class__.__name__.find('Sequential')!=-1:
for s in m.children():
if s.__class__.__name__.find('Conv') != -1:
#我的网络第一层和下载网络结构的第一层不同,所以我直接使用凯明初始化了
if i==0:
init.kaiming_normal(s.weight.data, a=0, mode='fan_in')
else:
kernels, bias=self.load_weightmat(i)
s.weight=torch.nn.Parameter(kernels)
s.bias=torch.nn.Parameter(bias)
elif s.__class__.__name__.find('Linear') != -1:
init.kaiming_normal(s.weight.data, a=0, mode='fan_in')
init.constant(s.bias.data, 0.0)
elif s.__class__.__name__.find('BatchNorm') != -1:
init.normal(s.weight.data, 1.0, 0.02)
init.constant(s.bias.data, 0.0)
i+=1
else: i+=1
def forward(self, x):
B,C,H,W=x.size()
out = self.conv1_1(x)
out = self.conv1_2(out)
out=self.maxpool1(out)
out = self.conv2_1(out)
out = self.conv2_2(out)
out=self.maxpool2(out)
out = self.conv3_1(out)
out = self.conv3_2(out)
out = self.conv3_3(out)
out = self.maxpool3(out)
out = self.conv4_1(out)
out = self.conv4_2(out)
out = self.conv4_3(out)
out = self.maxpool4(out)
out = self.conv5_1(out)
out = self.conv5_2(out)
out = self.conv5_3(out)
out = self.maxpool5(out)
out=out.view(B,-1)
out = self.fc1(out)
out = self.fc2(out)
out = self.fc3(out)
out = self.softmax(out)
return out
def load_weightmat(self,i):
"""
weights[0][0][0][0]=['conv1_1']
weights[0][0][0][1]=['conv']
weights[0][0][0][2][0]=kernels, bias
:param i:
:return:
"""
name=self.weights[i][0][0][1]
if name != 'conv':
raise Exception("weight error matching")
kernels, bias = self.weights[i][0][0][2][0]
kernels=kernels.transpose((3,2,0,1))
bias=bias.transpose(1,0)[0] #偏置的尺寸为64,而加载的偏置尺寸为1*64
kernels=torch.Tensor(kernels)
bias=torch.Tensor(bias)
return kernels, bias