使用RNN对MNIST手写数字进行分类。RNN和LSTM模型结构

pytorch中的LSTM的使用让人有点头晕,这里讲述的是LSTM的模型参数的意义。


1、加载数据集

import torch 
import torchvision
import torch.nn as nn
import torchvision.transforms as transforms
import torch.utils.data as Data 

device  = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

sequence_length = 28 
input_size = 28 
hidden_size = 128 
num_layers = 2 
num_classes = 10 
batch_size = 128 
num_epochs = 2 
learning_rate = 0.01 

train_dataset = torchvision.datasets.MNIST(root='./data/',train=True,transform=transforms.ToTensor(),download=True)
test_dataset = torchvision.datasets.MNIST(root='./data/',train=False,transform=transforms.ToTensor())

train_loader = Data.DataLoader(dataset=train_dataset,batch_size=batch_size,shuffle=True)
test_loader = Data.DataLoader(dataset=test_dataset,batch_size=batch_size)

 2、构建RNN模型

  • input_size – 输入的特征维度
  • hidden_size – 隐状态的特征维度
  • num_layers – 层数(和时序展开要区分开)
  • bias – 如果为False,那么LSTM将不会使用,默认为True
  • batch_first – 如果为True,那么输入和输出Tensor的形状为(batch, seq, feature)
  • dropout – 如果非零的话,将会在RNN的输出上加个dropout,最后一层除外。
  • bidirectional – 如果为True,将会变成一个双向RNN,默认为False

       1、上面的参数来自于文档,最基本的参数是input_size, hidden_size, num_layer三个。input_size:输入数据向量维度,在这里为28;hidden_size:隐藏层特征维度,也是输出的特征维度,这里是128;num_layers:lstm模块个数,这里是2。

       2、h0和c0的初始化维度为(num_layer,batch_size, hidden_size

       3、lstm的输出有out和(hn,cn),其中out.shape = torch.Size([128, 28, 128]),对应(batch_size,时序数,隐藏特征维度),也就是保存了28个时序的输出特征,因为做的分类,所以只需要最后的输出特征。所以取出最后的输出特征,进行全连接计算,全连接计算的输出维度为10(10分类)。

       4、batch_first这个参数比较特殊:如果为true,那么输入数据的维度为(batch, seq, feature),否则为(seq, batch, feature)

       5、num_layers:lstm模块个数,如果有两个,那么第一个模块的输出会变成第二个模块的输入。

       总结:构建一个LSTM模型要用到的参数,(输入数据的特征维度,隐藏层的特征维度,lstm模块个数);时序的个数体现在X中, X.shape = (batch_size,  时序长度, 数据向量维度)。

       可以理解为LSTM可以根据我们的输入来实现自动的时序匹配,从而达到输入长短不同的功能。

class RNN(nn.Module):
    def __init__(self, input_size,hidden_size,num_layers, num_classes):
        super(RNN, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        #input_size - 输入特征维度
        #hidden_size - 隐藏状态特征维度
        #num_layers - 层数(和时序展开要区分开),lstm模块的个数
        #batch_first为true,输入和输出的形状为(batch, seq, feature),true意为将batch_size放在第一维度,否则放在第二维度
        self.lstm = nn.LSTM(input_size,hidden_size,num_layers,batch_first = True)  
        self.fc = nn.Linear(hidden_size, num_classes)
        
    def forward(self,x):
        #参数:LSTM单元个数, batch_size, 隐藏层单元个数 
        h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)   #h0.shape = (2, 128, 128)
        c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
         
        #输出output :  (seq_len, batch, hidden_size * num_directions)
        #(h_n, c_n):最后一个时间步的隐藏状态和细胞状态
        #对out的理解:维度batch, eq_len, hidden_size,其中保存着每个时序对应的输出,所以全连接部分只取最后一个时序的
        #out第一维batch_size,第二维时序的个数,第三维隐藏层个数,所以和lstm单元的个数是无关的
        out,_ = self.lstm(x, (h0, c0))  #shape = torch.Size([128, 28, 128])
        out = self.fc(out[:,-1,:])  #因为batch_first = true,所以维度顺序batch, eq_len, hidden_size
        return out

 训练部分

model = RNN(input_size,hidden_size, num_layers, num_classes).to(device)
print(model)

#RNN(
#  (lstm): LSTM(28, 128, num_layers=2, batch_first=True)
#  (fc): Linear(in_features=128, out_features=10, bias=True)
#)

criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

total_step = len(train_loader)
for epoch in range(num_epochs):
    for i,(images, labels) in enumerate(train_loader):
        #batch_size = -1, 序列长度 = 28, 数据向量维度 = 28
        images = images.reshape(-1, sequence_length, input_size).to(device)
        labels = labels.to(device)
        
        # Forward pass
        outputs = model(images)
        loss = criterion(outputs, labels)
        
        # Backward and optimize
        optimizer.zero_grad()
        loss.backward() 
        optimizer.step()
        
        if (i+1) % 100 == 0:
            print(outputs.shape)
            print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' 
                   .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

# Test the model
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.reshape(-1, sequence_length, input_size).to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))