1、静态全局变量

在全局变量前,加上关键字static,该变量就被定义成为一个静态全局变量。我们先举一个静态全局变量的例子,如下:

//Example 1
 #include <iostream.h>
 void fn();
 static int n; //定义静态全局变量
 void main()
 { n=20; 
 cout<<n<<endl; 
 fn();
 }
 void fn()
 { n++;
 cout<<n<<endl;
 }

静态全局变量有以下特点:

该变量在全局数据区分配内存;

未经初始化的静态全局变量会被程序自动初始化为0(自动变量的值是随机的,除非它被显式初始化);

静态全局变量在声明它的整个文件都是可见的,而在文件之外是不可见的;

静态变量都在全局数据区分配内存,包括后面将要提到的静态局部变量。对于一个完整的程序,在内存中的分布情况如下图:

代码区

全局数据区

堆区

栈区

一般程序的由new产生的动态数据存放在堆区,函数内部的自动变量存放在栈区。自动变量一般会随着函数的退出而释放空间,静态数据(即使是函数内部的静 态局部变量)也存放在全局数据区。全局数据区的数据并不会因为函数的退出而释放空间。细心的读者可能会发现,Example 1中的代码中将

static int n; //定义静态全局变量

改为

int n; //定义全局变量


程序照样正常运行。

的确,定义全局变量就可以实现变量在文件中的共享,但定义静态全局变量还有以下好处:

静态全局变量不能被其它文件所用;

其它文件中可以定义相同名字的变量,不会发生冲突;

您可以将上述示例代码改为如下:

//Example 2//File1
 #include <iostream.h>
 void fn();
 static int n; //定义静态全局变量
 void main()
 { n=20; 
 cout<<n<<endl; 
 fn();
 }
 //File2
 #include <iostream.h>
 extern int n;
 void fn()
 { n++; 
 cout<<n<<endl;
 }

编译并运行Example 2,您就会发现上述代码可以分别通过编译,但运行时出现错误。 试着将

static int n; //定义静态全局变量

改为

int n; //定义全局变量

再次编译运行程序,细心体会全局变量和静态全局变量的区别。

2、静态局部变量

在局部变量前,加上关键字static,该变量就被定义成为一个静态局部变量。

我们先举一个静态局部变量的例子,如下:

//Example 3
 #include <iostream.h>
 void fn();
 void main()
 { fn();
 fn();
 fn();
 }
 void fn()
 { static n=10; 
 cout<<n<<endl; 
 n++;
 }

通常,在函数体内定义了一个变量,每当程序运行到该语句时都会给该局部变量分配栈内存。但随着程序退出函数体,系统就会收回栈内存,局部变量也相应失效。

但有时候我们需要在两次调用之间对变量的值进行保存。通常的想法是定义一个全局变量来实现。但这样一来,变量已经不再属于函数本身了,不再仅受函数的控制,给程序的维护带来不便。

静态局部变量正好可以解决这个问题。静态局部变量保存在全局数据区,而不是保存在栈中,每次的值保持到下一次调用,直到下次赋新值。

静态局部变量有以下特点:

该变量在全局数据区分配内存;

静态局部变量在程序执行到该对象的声明处时被首次初始化,即以后的函数调用不再进行初始化;

静态局部变量一般在声明处初始化,如果没有显式初始化,会被程序自动初始化为0;

它始终驻留在全局数据区,直到程序运行结束。但其作用域为局部作用域,当定义它的函数或语句块结束时,其作用域随之结束;