算法流程

这是我之前画的一个体现一五年DQN算法的示意图:



Mali的GPU_2d

看这张图需要注意的一点是,整个算法是可以看做独立进行的两个过程:

  1. 用价值网络去玩游戏(play)
  2. 对价值网络进行更新(updata)

Mali的GPU_ide_02

开始编程

所需要的工具:

  1. pytorch
  2. opencv-python
  3. supermario environment

作为使用pytorch的新手,这次踩过的最大一个坑就是,如果ndarray和torch.Tensor之间频繁转换,关系比较混乱的话,把Tensor放在GPU里会特别的慢,而且可能慢到无法想象。大概是多维数据在GPU和CPU之间转移所导致的。多维向量最好在一开始就是以Tensor的形式出现的。



# if gpu is to be used

use_cuda = torch.cuda.is_available()
FloatTensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if use_cuda else torch.LongTensor
ByteTensor = torch.cuda.ByteTensor if use_cuda else torch.ByteTensor

Tensor = FloatTensor



在以后的代码中,就都用Tensor定义变量。

价值网络

我在价值网络这个类中,除了定义了网络结构,还增加了一些功能:

  1. 网络结构及前向传播
  2. 动作选择
  3. 网络参数更新
  • 网络结构
class dqn_net(nn.Module):
    def __init__(self,ACTION_NUM):
        super(dqn_net,self).__init__()
        self.conv1=nn.Conv2d(in_channels=4,out_channels=16,kernel_size=8,stride=4)
        self.conv2=nn.Conv2d(in_channels=16,out_channels=32,kernel_size=4,stride=2)
        self.fc1=nn.Linear(in_features=9*9*32,out_features=256)
        self.fc2=nn.Linear(in_features=256,out_features=ACTION_NUM)
        self.action_num=ACTION_NUM
    def forward(self,input):
        output=F.relu(self.conv1(input))
        output=F.relu(self.conv2(output))
        output=output.view(-1,9*9*32)
        output=F.relu(self.fc1(output))
        output=self.fc2(output)
        return output



  • 动作选择
def select_action(self,input):
        '''
        parameters
        ----------
        input : {Tensor} of shape torch.Size([4,84,84])
        
        Return
        ------
        action_button , action_onehot : {int} , {Tensor}
        '''
        input=Variable(input.unsqueeze(0))
        output=self.forward(input)
        action_index=output.data.max(1)[1][0]
        # action_button , action_onehot
        if action_index==0: return 0,Tensor([1,0,0,0,0,0]) # 不动
        elif action_index==1: return 3,Tensor([0,1,0,0,0,0]) # 左走
        elif action_index==2: return 7,Tensor([0,0,1,0,0,0]) # 右走
        elif action_index==3: return 11,Tensor([0,0,0,1,0,0]) # 原地跳
        elif action_index==4: return 4,Tensor([0,0,0,0,1,0]) # 左跳
        elif action_index==5: return 8,Tensor([0,0,0,0,0,1]) # 右跳



这里返回的动作指令有相对应的两个形式:

1、用来输入游戏环境的动作编号。对应着按键情况。实际上这个游戏一共有6个按键,原游戏环境中写了14种按键情况,而我只取了其中6种按键组合,对应6种动作。

mapping = { 
   
 0: [0, 0, 0, 0, 0, 0], 
   # NO1: [1, 0, 0, 0, 0, 0], 
   # Up2: [0, 1, 0, 0, 0, 0], 
   # Down3: [0, 0, 1, 0, 0, 0], 
   # Left4: [0, 0, 1, 0, 1, 0], 
   # Left + A5: [0, 0, 1, 0, 0, 1], 
   # Left + B6: [0, 0, 1, 0, 1, 1], 
   # Left + A + B7: [0, 0, 0, 1, 0, 0], 
   # Right8: [0, 0, 0, 1, 1, 0], 
   # Right + A9: [0, 0, 0, 1, 0, 1], 
   # Right + B10: [0, 0, 0, 1, 1, 1], 
   # Right + A + B11: [0, 0, 0, 0, 1, 0], 
   # A12: [0, 0, 0, 0, 0, 1], 
   # B13: [0, 0, 0, 0, 1, 1], 
   # A + B}

2、用来与网络输出值对应的,one-hot 编码的形式,每一位代表一种动作,为1代表执行该动作。

  • 网络更新
def update(self,samples,loss_func,optim_func,learn_rate,target_net,BATCH_SIZE,GAMMA):
        '''update the value network one step

        Parameters
        ----------
        samples: {namedtuple}
            Transition(obs4=(o1,o2,...),act=(a1,a2,...),
            next_ob=(no1,no2,...),reward=(r1,r2,...),done=(d1,d2,...))
        loss: string
            the loss function of the network
            e.g. 'nn.MSELoss'
        optim: string
            the optimization function of the network
            e.g. 'optim.SGD'
        learn_rate: float
            the learing rate of the optimizer

        Functions
        ---------
            update the network one step
        '''
        obs4_batch=Variable(torch.cat(samples.obs4)) # ([BATCH,4,84,84])
        next_obs4_batch=Variable(torch.cat(samples.next_obs4)) # ([BATCH,4,84,84])
        action_batch=Variable(torch.cat(samples.act)) # ([BATCH,6])
        done_batch=samples.done # {tuple} of bool,len=BATCH
        reward_batch=torch.cat(samples.reward) # ([BATCH,1])
        ### compute the target Q(s,a) value ###
        value_batch=target_net(next_obs4_batch)
        target=Variable(torch.zeros(BATCH_SIZE).type(Tensor))
        for i in range(BATCH_SIZE):
            if done_batch[i]==False:
                target[i]=reward_batch[i]+GAMMA*Tensor.max(value_batch.data[i])
            elif done_batch[i]==True:
                target[i]=reward_batch[i]
        ### compute the current net output value ###
        output_all=self.forward(obs4_batch)*action_batch
        output=output_all.sum(dim=1) # {Variable contain FloatTensor}
        criterion=loss_func()
        optimizer=optim_func(self.parameters(),lr=learn_rate)
        loss=criterion(output,target)
        optimizer.zero_grad()# set gradients of parameters to be optimized to zero
        loss.backward()
        optimizer.step()



用来训练的样本是一个namedtuple的形式:
{namedtuple}:
Transition(obs4=(o1,o2,...),act=(a1,a2,...),next_ob=(no1,no2,...),reward=(r1,r2,...),done=(d1,d2,...))

训练的过程是这样的:

  1. 取出观察值obs4输入网络,得到网络输出
  2. 取出输出中与样本中的动作act对应的值

Mali的GPU_ci_03

3. 利用样本里的r和s'计算目标值:

计算目标值时需要判断下一个状态是不是终止状态。

  • 如果不是的话就按照下式计算目标值:
  • 如果是终止状态则目标值为:

4. 第二步中取出的Q值与第三步中计算的目标值,作为计算损失函数的两项。

样本池



from collections import namedtuple
import random
import numpy as np

class replay_memory:
    def __init__(self,capacity):
        self.capacity=capacity
        self.memory=[]
        self.position=0
        self.Transition=namedtuple('Transition',
                                   ['obs4','act','next_obs4','reward','done'])
    def __len__(self):
        return len(self.memory)
    def add(self,*args):
        '''Add a transition to replay memory
        Parameters
        ----------
        e.g. repay_memory.add(obs4,action,next_obs4,reward,done)
        obs4: {Tensor} of shape torch.Size([4,84,84])
        act: {Tensor} of shape torch.Size([6])
        next_obs4: {Tensor} of shape torch.Size([4,84,84])
        reward: {int}
        done: {bool} the next station is the terminal station or not

        Function
        --------
        the replay_memory will save the latest samples
        '''
        if len(self.memory)<self.capacity:
            self.memory.append(None)
        self.memory[self.position]=self.Transition(*args)
        self.position=(self.position+1)%self.capacity
    def sample(self,batch_size):
        '''Sample a batch from replay memory
        Parameters
        ----------
        batch_size: int
            How many trasitions you want

        Returns
        -------
        obs_batch: {Tensor} of shape torch.Size([BATCH_SIZE,4,84,84])
            batch of observations

        act_batch: {Tensor} of shape torch.Size([BATCH_SIZE,6])
            batch of actions executed w.r.t observations in obs_batch

        nob_batch: {Tensor} of shape torch.Size([BATCH_SIZE,4,84,84])
            batch of next observations w.r.t obs_batch and act_batch

        rew_batch: {ndarray} of shape
            batch of reward received w.r.t obs_batch and act_batch
        '''
        batch = random.sample(self.memory, batch_size)
        batch_zip=self.Transition(*zip(*batch))
        return batch_zip



其中的样本,是以namedtuple的形式存放的:

{Transition}
0:{tuple} of {Tensor}-shape-torch.Size([4,84,84])
1:{tuple} of {Tensor}-shape-torch.Size([6])
2:{tuple} of {Tensor}-shape-torch.Size([4,84,84])
3:{tuple} of {int}
4:{tuple} of {bool}

图片预处理



def ob_process(frame):
    '''
    Parameters
    ----------
    frame: {ndarray} of shape (90,90)

    Returns
    -------
    frame: {Tensor} of shape torch.Size([1,84,84])
    '''
    frame = cv2.resize(frame, (84, 84), interpolation=cv2.INTER_AREA)
    frame=frame.astype('float64')
    frame=torch.from_numpy(frame)
    frame=frame.unsqueeze(0).type(Tensor)
    return frame



学习过程

  • 进行各种初始化
### initialization ###
    action_space=[(0,Tensor([1,0,0,0,0,0])),
                  (3,Tensor([0,1,0,0,0,0])),
                  (7,Tensor([0,0,1,0,0,0])),
                  (11,Tensor([0,0,0,1,0,0])),
                  (4,Tensor([0,0,0,0,1,0])),
                  (8,Tensor([0,0,0,0,0,1]))]
    # (action_button , action_onehot)
    # 以上动作分别为:不动、左走、右走、跳、左跳、右跳
    value_net = dqn_net(ACTION_NUM)
    target_net=dqn_net(ACTION_NUM)
    if torch.cuda.is_available():
       value_net.cuda()
       target_net.cuda()
    if os.listdir(PATH):
        value_net.load_state_dict(torch.load(PATH))
    buffer=replay_memory(REPLAY_MEMORY_CAPACITY)
    env.reset()
    obs,_,_,_,_,_,_=env.step(0)
    obs=ob_process(obs)
    obs4=torch.cat(([obs,obs,obs,obs]),dim=0) # {Tensor} of shape torch.Size([4,84,84])
    judge_distance=0
    episode_total_reward = 0
    epi_total_reward_list=[]
    # counters #
    time_step=0
    update_times=0
    episode_num=0
    history_distance=200



之后进入以下循环,开始玩游戏:



while episode_num <= MAX_EPISODE:



  • 进行动作选择
### choose an action with epsilon-greedy ###
        prob = random.random()
        threshold = EPS_END + (EPS_START - EPS_END) * math.exp(-1 * episode_num / EPS_DECAY)
        if prob <= threshold:
            action_index = np.random.randint(6)
            action_button = action_space[action_index][0] # {int}
            action_onehot = action_space[action_index][1] # {Tensor}
        else:
            action_button, action_onehot = value_net.select_action(obs4)



  • 执行该动作
### do one step ###
        obs_next, reward, done, _, max_distance, _, now_distance = env.step(action_button)
        obs_next = ob_process(obs_next)
        obs4_next = torch.cat(([obs4[1:, :, :],obs_next]),dim=0)
        buffer.add(obs4.unsqueeze(0), action_onehot.unsqueeze(0), obs4_next.unsqueeze(0), Tensor([reward]).unsqueeze(0), done)
        episode_total_reward+=reward
        if now_distance <= history_distance:
            judge_distance+=1
        else:
            judge_distance=0
            history_distance=max_distance



这里有一步用来计算马里奥走了多远的操作,如果马里奥原地徘徊了一定时间,那么也算到达终止状态而重新开始下一轮游戏。

  • 转移到下个状态
### go to the next state ###
        if done == False:
            obs4 = obs4_next
            time_step += 1
        elif done == True or judge_distance > 50:
            env.reset()
            obs, _, _, _, _, _, _ = env.step(0)
            obs = ob_process(obs)
            obs4 = torch.cat(([obs, obs, obs, obs]), dim=0)
            episode_num += 1
            history_distance = 200
            epi_total_reward_list.append(episode_total_reward)
            print('episode %d total reward=%.2f'%(episode_num,episode_total_reward))
            episode_total_reward = 0



这里要判断是否到达了终止状态,如果到了终止状态,则进行一些初始化准备开始下一轮游戏。

  • 更新网络
### do one step update ###
        if len(buffer) == buffer.capacity and time_step % 4 == 0:
            batch_transition = buffer.sample(BATCH_SIZE)
            value_net.update(samples=batch_transition, loss_func=LOSS_FUNCTION,
                             optim_func=OPTIM_METHOD, learn_rate=LEARNING_RATE,
                             target_net=target_net, BATCH_SIZE=BATCH_SIZE,
                             GAMMA=GAMMA)
            update_times += 1
            ### copy value net parameters to target net ###
            if update_times % NET_COPY_STEP == 0:
                target_net.load_state_dict(value_net.state_dict())





以上便是整个过程。经过一段时间的训练,可以看到智能体确实有进步,但还远远不够“智能”。这个算法只是复现的论文中的方法,而对超级玛丽这个游戏要想玩好,还应该做一些有针对性的分析。并且可以加入更多其他方法去玩这个游戏。