文章写出后有不少人加了我的微信,也探讨了不少问题。这其中大家问得最多的问题是:到底怎么预测真正的未来值呢?而不是简单预测测试集里面的数据。这个问题其实很好解决,但貌似很多人不知道怎么写代码,也不知道怎么在原有代码的基础上改代码。所以,这篇文章我详细讲一下如何预测真正的未来值。
II. 分析
模型训练自不必说。
在对测试集进行预测时,我们已经提前处理好了数据,具体测试代码如下:
def test(args, Dte, lis, path):
# Dtr, Dte, lis1, lis2 = load_data(args, flag, args.batch_size)
pred = []
y = []
print('loading models...')
input_size, hidden_size, num_layers = args.input_size, args.hidden_size, args.num_layers
output_size = args.output_size
if args.bidirectional:
model = BiLSTM(input_size, hidden_size, num_layers, output_size, batch_size=args.batch_size).to(device)
else:
model = LSTM(input_size, hidden_size, num_layers, output_size, batch_size=args.batch_size).to(device)
# models = LSTM(input_size, hidden_size, num_layers, output_size, batch_size=args.batch_size).to(device)
model.load_state_dict(torch.load(path)['models'])
model.eval()
print('predicting...')
for (seq, target) in tqdm(Dte):
target = list(chain.from_iterable(target.data.tolist()))
y.extend(target)
seq = seq.to(device)
with torch.no_grad():
y_pred = model(seq)
y_pred = list(chain.from_iterable(y_pred.data.tolist()))
pred.extend(y_pred)
y, pred = np.array(y), np.array(pred)
m, n = lis[0], lis[1]
y = (m - n) * y + n
pred = (m - n) * pred + n
print('mape:', get_mape(y, pred))
# plot
plot(y, pred)
核心代码:
for (seq, target) in tqdm(Dte):
target = list(chain.from_iterable(target.data.tolist()))
y.extend(target)
seq = seq.to(device)
with torch.no_grad():
y_pred = model(seq)
y_pred = list(chain.from_iterable(y_pred.data.tolist()))
pred.extend(y_pred)
Dte为测试集,对于Dte中的每一个seq我们都知道了其标签target,但在预测未来值时我们只能得到seq,并不知道label。
当前时间为2022/6/6的21:00,我们用前24个小时的负荷值预测未来12个小时的负荷值。现在假设测试集的截止时间就为6/6的21:00,现在我们需要预测22:00到6/7 9:00的负荷值。根据模型的需求,我们需要构造一个seq,seq里面包含了6/6 21:00往前24个时刻的负荷值,这个是真实存在的。
具体代码:
def predict_one_step(model):
data = data_process.load_data()
train = data[:int(len(data) * 0.7)]
test = data[int(len(data) * 0.7):len(data)]
# 取test的最后24个负荷值
load = test[test.columns[1]]
load = load.tolist()
m, n = np.max(load), np.min(load)
load = (load - n) / (m - n)
test = test.values.tolist()
seq = []
for i in range(len(test) - 24, len(test)):
seq.append([load[i]])
seq = [seq]
seq = torch.FloatTensor(seq)
seq = MyDataset(seq)
seq = DataLoader(dataset=seq, batch_size=1, shuffle=False, num_workers=0)
# print(new_seq)
seq = [x for x in iter(seq)][0]
print(seq.shape) # (1, 24, 1) batch_size=1, seq_len=24, input_size=1
# 开始预测
seq = seq.to(device)
with torch.no_grad():
y_pred = model(seq)
y_pred = list(chain.from_iterable(y_pred.data.tolist()))
# y_pred为一个列表,长度为12
return y_pred * (m - n) + n
上述代码的作用是利用测试集中最后24个时刻的值预测未来12个时刻的负荷值,这12值还没被观测到,是真正意义上的未来值。值得注意的是,为了满足模型的需要,即使只预测一个样本,我们也需要将其处理成如下格式的Tensor:
(batch_size=1, seq_len=24, input_size=1)
这里input_size=1,即我们在预测未来值时只考虑负荷值,不考虑其他诸如温度、湿度以及压强等环境因素。
现在我们已经预测完了今晚22:00到6/7 9:00的负荷值,如果我们想接着预测6/7 10:00~21:00的负荷值又该如何操作呢?一般来讲,有以下三种可能:
(1)假设电网有能力实时收集到真实用电负荷值,到明天9:00时,我们已经观测到了今晚22:00到明天9:00的真实值,且这些真实值保存在了数据库中,假设保存在了数组true_list中。那么我们完全可以利用今晚22:00到明天9:00的真实值预测未来12小时的负荷值,具体代码如下:
def predict_1(model, true_list, MAX, MIN):
# 取真实值中最后24个负荷值
true_list = true_list[-24:]
# 构造seq
true_list = (true_list- MIN) / (MAX - MIN)
seq = [[x] for x in true_list]
seq = [seq]
seq = torch.FloatTensor(seq)
seq = MyDataset(seq)
seq = DataLoader(dataset=seq, batch_size=1, shuffle=False, num_workers=0)
# print(new_seq)
seq = [x for x in iter(seq)][0]
print(seq.shape) # (1, 24, 1) batch_size=1, seq_len=24, input_size=1
# 开始预测
seq = seq.to(device)
with torch.no_grad():
y_pred = model(seq)
y_pred = list(chain.from_iterable(y_pred.data.tolist()))
# y_pred为一个列表,长度为12
return y_pred * (MAX - MIN) + MIN
简单来说就是利用真实值列表true_list中最后24个值进行预测。需要注意的是,我们是利用训练集中的最大最小值来对新数据进行归一化与反归一化的。此时,我们是可以计算MAPE的,因为真实值和预测值都存在。
(2)在现实生活中,往往很难及时收集到用电负荷信息,比如我们预测到了明天9:00,在明天9:00时,我们收集不到今晚22:00到明天9:00间的真实负荷值,此时我们就需要利用预测值来进行预测。也就是用一开始得到的今晚22:00到明天9:00间的预测值来预测未来12小时的负荷值,我们假设预测值保存在pred_list中,那么将上面代码中的true_list换成pred_list就可以得到未来12小时的负荷预测值。值得注意的是,此时是不能计算MAPE的,因为真实值尚未观测到。
(3)在明天9:00时,我们也不是一点真实值都没收集到,比如我们收集到了今晚22:00到明早3:00的负荷值,4:00到9:00的真实负荷值虽然已经产生,但电网还没有收集到数据库中。此时我们拥有6个真实值以及6个预测值,那么此时我们就可以用6个真实值加6个预测值,以及今晚9:00之前的12个真实值组成1个seq进行预测。一个大的前提:尽量使用真实值进行预测。
III. 多变量预测
上面的例子都是单变量预测,如果是多变量预测,情况将变得复杂一点。假设我们利用负荷值、温度、湿度以及压强四个变量来预测负荷。在我们预测今晚22:00到明早9:00的负荷值时,我们可以利用测试集中的数据进行预测。但当我们需要预测明早9:00之后的负荷值时,我们需要同时考虑是否收集到了真实的温度、湿度以及压强值。一般来讲,这些环境变量的收集比负荷数据的收集更加容易,也就是上述第二节中的第一种情况。
如果我们无法及时收集到负荷值,我们可以利用预测值进行预测;如果我们无法及时收集到温度、湿度以及压强值,我们也只能利用预测值进行预测。这就意味着,我们需要额外训练三个模型来分别预测温度、湿度以及压强,由于这三个变量和负荷一一对应,也属于时序数据,我们也可以采用LSTM进行预测,如果其变化幅度不大也可以采用传统的机器学习算法进行预测。