2015_ResNet_何凯明:

图:

resnet34 epochs与top5 error关系 resnet34和resnet50参数量_深度学习

resnet34 epochs与top5 error关系 resnet34和resnet50参数量_ide_02


网络描述:

ResNet的主要思想是在网络中增加了直连通道,即Highway Network的思想。此前的网络结构是性能输入做一个非线性变换,而Highway Network则允许保留之前网络层的一定比例的输出。

第二幅图中这两种结构分别针对ResNet34(左图)和ResNet50/101/152(右图),一般称整个结构为一个”building block“。其中右图又称为”bottleneck design”,目的一目了然,就是为了降低参数的数目,第一个1x1的卷积把256维channel降到64维,然后在最后通过1x1卷积恢复,整体上用的参数数目:1x1x256x64 + 3x3x64x64 + 1x1x64x256 = 69632,而不使用bottleneck的话就是两个3x3x256的卷积,参数数目: 3x3x256x256x2 = 1179648,差了16.94倍。对于常规ResNet,可以用于34层或者更少的网络中,对于Bottleneck Design的ResNet通常用于更深的如101这样的网络中,目的是减少计算和参数量(实用目的)

特点,优点:

(1)提出residual结构(残差结构),并搭建超深的网络结构(突破1000层)。

(2)使用batch normalization 加速训练(丢弃dropout)。

(3)学习结果对网络权重的波动变化更加敏感。

(4)相比传统的VGG网络,复杂度降低,所需的参数量下降。

(5)网络深度更深,不会出现梯度消失现象。

(6)解决了深层次的网络退化问题,在增加网络层数的过程中,training accuracy 逐渐趋于饱和,继续增加层数,training accuracy 就会出现下降的现象,而这种下降不是由过拟合造成的。

代码:
Pytorch1实现:
#nn.Sequential实现
class ResidualBlock(nn.Module):
    #实现子module:Residual Block
    def __init__(self, in_ch, out_ch, stride=1, shortcut=None):
        super(ResidualBlock,self).__init__()
        self.left = nn.Sequential(
            nn.Conv2d(in_ch,out_ch,3,stride,padding=1,bias=False),
            nn.BatchNorm2d(out_ch),
            nn.ReLU(inplace = True),#inplace = True原地操作
            nn.Conv2d(out_ch,out_ch,3,stride=1,padding=1,bias=False),
            nn.BatchNorm2d(out_ch)
            )
        self.right = shortcut
        
    def forward(self,x):
        out = self.left(x)
        residual = x if self.right is None else self.right(x)
        out += residual
        return F.relu(out)
        
class ResNet34(nn.Module):#224x224x3
    #实现主module:ResNet34
    def __init__(self, num_classes=1):
        super(ResNet34,self).__init__()
        self.pre = nn.Sequential(
                nn.Conv2d(3,64,7,stride=2,padding=3,bias=False),# (224+2*p-)/2(向下取整)+1,size减半->112
                nn.BatchNorm2d(64),#112x112x64
                nn.ReLU(inplace = True),
                nn.MaxPool2d(3,2,1)#kernel_size=3, stride=2, padding=1
                )#56x56x64
        
        #重复的layer,分别有3,4,6,3个residual block
        self.layer1 = self.make_layer(64,64,3)#56x56x64,layer1层输入输出一样,make_layer里,应该不用对shortcut进行处理,但是为了统一操作。。。
        self.layer2 = self.make_layer(64,128,4,stride=2)#第一个stride=2,剩下3个stride=1;28x28x128
        self.layer3 = self.make_layer(128,256,6,stride=2)#14x14x256
        self.layer4 = self.make_layer(256,512,3,stride=2)#7x7x512
        #分类用的全连接
        self.fc = nn.Linear(512,num_classes)
        
    def make_layer(self,in_ch,out_ch,block_num,stride=1):
        #当维度增加时,对shortcut进行option B的处理
        shortcut = nn.Sequential(#首个ResidualBlock需要进行option B处理
                nn.Conv2d(in_ch,out_ch,1,stride,bias=False),#1x1卷积用于增加维度;stride=2用于减半size;为简化不考虑偏差
                nn.BatchNorm2d(out_ch)
                )
        layers = []
        layers.append(ResidualBlock(in_ch,out_ch,stride,shortcut))
        
        for i in range(1,block_num):
            layers.append(ResidualBlock(out_ch,out_ch))#后面的几个ResidualBlock,shortcut直接相加
        return nn.Sequential(*layers)
        
    def forward(self,x):    #224x224x3
        x = self.pre(x)     #56x56x64
        x = self.layer1(x)  #56x56x64
        x = self.layer2(x)  #28x28x128
        x = self.layer3(x)  #14x14x256
        x = self.layer4(x)  #7x7x512
        x = F.avg_pool2d(x,7)#1x1x512
        x = x.view(x.size(0),-1)#将输出拉伸为一行:1x512
        x = self.fc(x)    #1x1
        # nn.BCELoss:二分类用的交叉熵,用的时候需要在该层前面加上 Sigmoid 函数
        return nn.Sigmoid()(x)#1x1,将结果化为(0~1)之间
Pytorch实现:
#直接堆叠
class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, in_channel, out_channel, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
                               kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channel)
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
                               kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channel)
        self.downsample = downsample

    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        out += identity
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, in_channel, out_channel, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
                               kernel_size=1, stride=1, bias=False)  # squeeze channels
        self.bn1 = nn.BatchNorm2d(out_channel)
        # -----------------------------------------
        self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
                               kernel_size=3, stride=stride, bias=False, padding=1)
        self.bn2 = nn.BatchNorm2d(out_channel)
        # -----------------------------------------
        self.conv3 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel*self.expansion,
                               kernel_size=1, stride=1, bias=False)  # unsqueeze channels
        self.bn3 = nn.BatchNorm2d(out_channel*self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample

    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        out += identity
        out = self.relu(out)

        return out


class ResNet(nn.Module):

    def __init__(self, block, blocks_num, num_classes=1000, include_top=True):
        super(ResNet, self).__init__()
        self.include_top = include_top
        self.in_channel = 64

        self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2,
                               padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(self.in_channel)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, blocks_num[0])
        self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2)
        self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2)
        self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2)
        if self.include_top:
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))  # output size = (1, 1)
            self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')

    def _make_layer(self, block, channel, block_num, stride=1):
        downsample = None
        if stride != 1 or self.in_channel != channel * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(channel * block.expansion))

        layers = []
        layers.append(block(self.in_channel, channel, downsample=downsample, stride=stride))
        self.in_channel = channel * block.expansion

        for _ in range(1, block_num):
            layers.append(block(self.in_channel, channel))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        if self.include_top:
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.fc(x)

        return x


def resnet34(num_classes=1000, include_top=True):
    return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)


def resnet101(num_classes=1000, include_top=True):
    return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)