前一段时间写了一个人脸相关的算法,包括视频中的人脸检测,相机的人脸检测,图像中人脸检测,还有人脸识别。

使用的是VS2013和opencv。

首先创建头文件common.h

#ifndef _COMMON_H
#define _COMMON_H

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
#include <sys/types.h>
#include <sys/stat.h>
#include <fstream>
#include <string>
#include <ctime>
#include <io.h>
#include <direct.h>
//#include <cstdlib>


static const char help[] = "face detection on image:   needs image\n" \
                            "face detection on video:   needs video\n"  \
                            "face detection on camera:  needs camera\n" \
                            "face recognition:  needs images\n";

/*
  功能:判断该路径指向的是文件还是文件夹

  函数:isFileOrFolder
  
  文件返回:   0
  文件夹返回: 1  
*/
bool isFileOrFolder(const std::string fileName);

#endif

然后就是创建common.cpp文件,这里面有相关的实现。

#include "common.h"

bool isFileOrFolder(const std::string fileName)
{
  const char* path = fileName.c_str();
  struct _stat buf = { 0 };
  _stat(path, &buf);
  return buf.st_mode & _S_IFDIR;
}

然后就是视频中的人脸检测创建文件face_detection_video.h

#ifndef _FACE_DETETION_VIDEO_H_
#define _FACE_DETETION_VIDEO_H_

#include "common.h"
void face_detetion_video(const std::string videoPath, const std::string cascadeName);

#endif

接着创建对应的cpp文件,face_detection_video.cpp

#include "face_deteion_video.h"

void face_detetion_video(const std::string videoPath, const std::string cascadeName)
{
  cv::VideoCapture cap(videoPath);
  if (!cap.isOpened())
  {
    std::cout << "不能打开该视频文件!" << std::endl;
    return;
  }

  double scale = 2;
  cv::CascadeClassifier cascade;
  cascade.load(cascadeName);
  std::vector<cv::Rect> faces;
  
  double fps = cap.get(CV_CAP_PROP_FPS);  //获取帧率

  bool isVideoRewriteFile = true; // 是否把视频重新写入文件, 默认是false:不重新写入文件
  double dWidth = 0;
  double dHeight = 0;
  cv::Size frameSize;
  cv::VideoWriter vdWr;
  if (isVideoRewriteFile)
  {
    dWidth = cap.get(CV_CAP_PROP_FRAME_WIDTH);
    dHeight = cap.get(CV_CAP_PROP_FRAME_HEIGHT);
    frameSize = cv::Size(static_cast<int>(dWidth), static_cast<int>(dHeight));

    size_t pos = videoPath.find_last_of('.');
    std::string videoWritePath = videoPath.substr(0, pos);
    videoWritePath = videoWritePath + "_Result.avi";
    vdWr = cv::VideoWriter(videoWritePath, CV_FOURCC('M', 'J', 'P', 'G'), fps, frameSize, true);
    if (!vdWr.isOpened())
    {
      std::cout << "不能写入视频!" << std::endl;
      isVideoRewriteFile = false;
    }
  }

  while (1)
  {
    cv::Mat_<uchar> frame;
    bool bSuccess = cap.read(frame);
    if (!bSuccess)
    {
      break;
    }

    cv::Mat smallImg(cvRound(frame.rows / scale), cvRound(frame.cols / scale), CV_8UC1);  //cvRound对double型数据进行四舍五入
    cv::resize(frame, smallImg, smallImg.size(), 0, 0, cv::INTER_LINEAR);
    cvtColor(smallImg, smallImg, CV_RGB2GRAY);
    cv::equalizeHist(smallImg, smallImg);                                                 //equalizeHist提高图像的亮度和对比度

    cascade.detectMultiScale(smallImg, faces,
                              1.1, 2, 0
                              /*|CV_HAAR_FIND_BIGGEST_OBJECT
                              |CV_HAAR_DO_ROUGH_SEARCH*/
                              | CV_HAAR_SCALE_IMAGE
                              ,
                              cv::Size(30, 30));

    for (std::vector<cv::Rect>::const_iterator r = faces.begin(); r != faces.end(); r++){
      cv::Rect rect(0, 0, 0, 0);

      rect.x = int(r->x*scale);
      rect.y = int(r->y*scale);
      rect.width = int((r->width - 1)*scale);
      rect.height = int((r->height - 1)*scale);

      cv::rectangle(frame, rect, cv::Scalar(0, 0, 0), 3, 8);
    }

    //是否把检测结果写入文件
    if (isVideoRewriteFile)
    {
      vdWr.write(frame);
    }

    cv::imshow("Video", frame);
    cv::waitKey((int)(1000 / fps));

  }

  cap.release();
  vdWr.release();
}

然后是图像中的寻找人脸,文件名face_detection_img.h

#ifndef _FACE_DETETION_IMAGE_H_
#define _FACE_DETETION_IMAGE_H_

#include "common.h"

void face_detetion_img(const std::string imagePath, const std::string cascadeName);



#endif


接着就是对应头文件face_detection_img.cpp

#include "face_detetion_img.h"


void face_detetion_img(const std::string imgPath, const std::string cascadeName)
{
  //bool fileOrFolder = isFileOrFolder(imgPath);
  
  std::ifstream fin;
  fin.open(imgPath);

  cv::CascadeClassifier cascade;
  double scale = 1.3;
  std::vector<cv::Rect> faces;
  cv::Mat gray;

  // --Detection
  cascade.load(cascadeName);
  std::string name;
  while (getline(fin, name)){
    name.erase(0, name.find_first_not_of(" \t"));
    name.erase(name.find_last_not_of(" \t") + 1);

    // Read Image
    cv::Mat_<uchar> image = cv::imread(name, 0);
    if (image.empty())
    {
      continue;
    }

    // Read Opencv Detection Bbx
    cv::Mat smallImg(cvRound(image.rows / scale), cvRound(image.cols / scale), CV_8UC1); //cvRound对double型数据进行四舍五入
    cv::resize(image, smallImg, smallImg.size(), 0, 0, cv::INTER_LINEAR);
    cv::equalizeHist(smallImg, smallImg);                                              //equalizeHist提高图像的亮度和对比度
    // --Detection
    cascade.detectMultiScale(smallImg, faces,
                              1.1, 2, 0
                              /*|CV_HAAR_FIND_BIGGEST_OBJECT
                              |CV_HAAR_DO_ROUGH_SEARCH*/
                              | CV_HAAR_SCALE_IMAGE
                              ,
                              cv::Size(30, 30));
    for (std::vector<cv::Rect>::const_iterator r = faces.begin(); r != faces.end(); r++){
      cv::Rect rect(0, 0, 0, 0);

      rect.x = int(r->x*scale);
      rect.y = int(r->y*scale);
      rect.width = int((r->width - 1)*scale);
      rect.height = int((r->height - 1)*scale);

      cv::rectangle(image, rect, cv::Scalar(0, 255, 0), 3, 8);
    }

    cv::imshow("test", image);
    char s = cv::waitKey(0);
    if ('s' == s )
    {
      size_t pos = name.find_last_of('.');
      std::string filename = name.substr(0, pos);
      
      filename = filename + ".bmp";
      std::cout << filename << std::endl;
      cv::imwrite(filename, image);
    }
  }
  fin.close();
}


然后就是从摄像投中读取人脸信息。创建文件face_detection_camera.h

#ifndef _FACE_DETETION_CAMERA_H_
#define _FACE_DETETION_CAMERA_H_

#include "common.h"
void face_detetion_camera(const std::string cascadeName);

#endif

接着就是对应cpp文件,face_detection_camera.cpp

#include "face_detetion_camera.h"

void face_detetion_camera(const std::string cascadeName)
{
  cv::VideoCapture cap(0);
  if (!cap.isOpened())
  {
    std::cout << "不能打开该视频文件!" << std::endl;
    return;
  }

  double scale = 2;
  cv::CascadeClassifier cascade;
  cascade.load(cascadeName);
  std::vector<cv::Rect> faces;

  bool isVideoRewriteFile = false; // 是否把摄像头读取的数据写入文件。
  double dWidth = 0;
  double dHeight = 0;
  cv::Size frameSize;
  cv::VideoWriter vdWr;
  char tmp[1024] = { 0 };
  if (isVideoRewriteFile)
  {
    dWidth = cap.get(CV_CAP_PROP_FRAME_WIDTH);
    dHeight = cap.get(CV_CAP_PROP_FRAME_HEIGHT);
    frameSize = cv::Size(static_cast<int>(dWidth), static_cast<int>(dHeight));

    time_t t = time(0);
    memset(tmp, 0, sizeof(tmp));
    strftime(tmp, sizeof(tmp), "../camera_out_video/%Y.%m.%d-%H.%M.%S", localtime(&t));
    std::string videoWritePath(tmp);
    videoWritePath = videoWritePath + ".avi";
    vdWr = cv::VideoWriter(videoWritePath, CV_FOURCC('M', 'J', 'P', 'G'), 20, frameSize, true);
    if (!vdWr.isOpened())
    {
      std::cout << "不能写入视频!" << std::endl;
      isVideoRewriteFile = false;
    }
  }

  while (1)
  {
    cv::Mat frame;
    bool bSuccess = cap.read(frame);
    if (!bSuccess)
    {
      break;
    }

    cv::Mat smallImg(cvRound(frame.rows / scale), cvRound(frame.cols / scale), CV_8UC1);  //cvRound对double型数据进行四舍五入
    cv::resize(frame, smallImg, smallImg.size(), 0, 0, cv::INTER_LINEAR);
    cvtColor(smallImg, smallImg, CV_RGB2GRAY);
    cv::equalizeHist(smallImg, smallImg);                                                 //equalizeHist提高图像的亮度和对比度

    cascade.detectMultiScale(smallImg, faces,
                                1.1, 2, 0
                                /*|CV_HAAR_FIND_BIGGEST_OBJECT
                                |CV_HAAR_DO_ROUGH_SEARCH*/
                                | CV_HAAR_SCALE_IMAGE
                                ,
                                cv::Size(30, 30));

    for (std::vector<cv::Rect>::const_iterator r = faces.begin(); r != faces.end(); r++){
      cv::Rect rect(0, 0, 0, 0);

      rect.x = int(r->x*scale);
      rect.y = int(r->y*scale);
      rect.width = int((r->width - 1)*scale);
      rect.height = int((r->height - 1)*scale);

      cv::rectangle(frame, rect, cv::Scalar(0, 0, 0), 3, 8);
    }

    //是否把检测结果写入文件
    if (isVideoRewriteFile)
    {
      vdWr.write(frame);
    }

    cv::imshow("Video", frame);
    if (27 == cv::waitKey(20)){     // 按下ESC键,结束视频
      break;
    }

  }

  cap.release();
  vdWr.release();
}

最后是人脸识别的头文件:face_recognition.h

#ifndef _FACE_RECOGNITION_H_
#define _FACE_RECOGNITION_H_

#include "common.h"

void preDeal_original_img(const std::string recognitionPath, const std::string cascadeName);
std::vector<std::pair<cv::Mat, std::string >> get_CropFace_And_ImgPathName(const std::string recognitionPath, const std::string cascadeName);
bool matchFace(cv::Mat detectFace, cv::Mat dbFace);
void face_recognition(std::string recognitionPath, const std::string cascadeName);

#endif

以及对应的cpp文件:face_recognition.cpp

#include "face_recognition.h"

void preDeal_original_img(const std::string recognitionPath, const std::string cascadeName)
{
  std::ifstream fin;
  fin.open(recognitionPath);
  if (!fin)
  {
    std::cout << "Cannot open " + recognitionPath << std::endl;
    return;
  }

  // --Detection
  cv::CascadeClassifier cascade;
  cascade.load(cascadeName);
  if (cascade.empty())
  {
    std::cout << "Cascade path error!" << std::endl;
    return;
  }

  double scale = 1.3;
  std::vector<cv::Rect> faces;
  cv::Mat gray;

  std::string name;
  std::string camera_face = "../camera_face/";
  while (getline(fin, name)){
    if (name.empty())
    {
      continue;
    }
    name.erase(0, name.find_first_not_of(" \t"));
    name.erase(name.find_last_not_of(" \t") + 1);

    // Read Image
    cv::Mat img = cv::imread(name);
    if (img.empty())
    {
      continue;
    }

    cv::Mat_<uchar> image;
    if (img.channels() != 1)
    {
      cvtColor(img, image, CV_BGR2GRAY);
      image.convertTo(image, CV_8UC1);
    }
    else{
      image = img;
    }
    

    // 改变图像
    cv::Mat smallImg(cvRound(image.rows / scale), cvRound(image.cols / scale), CV_8UC1); //cvRound对double型数据进行四舍五入
    cv::resize(image, smallImg, smallImg.size(), 0, 0, cv::INTER_LINEAR);
    cv::equalizeHist(smallImg, smallImg);                                              //equalizeHist提高图像的亮度和对比度
    // --Detection
    cascade.detectMultiScale(smallImg, faces,
                              1.1, 3, 0
                              /*|CV_HAAR_FIND_BIGGEST_OBJECT
                              |CV_HAAR_DO_ROUGH_SEARCH*/
                              | CV_HAAR_SCALE_IMAGE
                              ,
                              cv::Size(30, 30));
    if (faces.size() > 0)
    {
      size_t pos = name.find_last_of('\\');
      std::string filename = name.substr(pos + 1);

      if (-1 == _access(camera_face.c_str(), 0))
      {
        _mkdir(camera_face.c_str());
      }

      filename = camera_face + filename;
      std::cout << filename << std::endl;
      cv::imwrite(filename, img);
    }

  }
  fin.close();

  //处理后的图片路径名写入Path_Image.txt中
  std::string getImgPathTxt = "cd " + camera_face + " && dir /b/s/p/w *.jpg > Path_Images.txt";
  system(getImgPathTxt.c_str());
}

std::vector<std::pair<cv::Mat, std::string >> get_CropFace_And_ImgPathName(const std::string recognitionPath, const std::string cascadeName)
{
  std::vector<std::pair<cv::Mat, std::string>> cropFaceAndImgPathNames;
  std::pair<cv::Mat, std::string> cropFaceAndImgPathName;

  cv::CascadeClassifier cascade;
  cascade.load(cascadeName);
  if (cascade.empty())
  {
    std::cout << "Cascade path error!" << std::endl;
    return std::vector<std::pair<cv::Mat, std::string >>();
  }

  std::ifstream fdatabase;
  fdatabase.open(recognitionPath);
  if (!fdatabase)
  {
    std::cout << "Cannot open " + recognitionPath << std::endl;
    return std::vector<std::pair<cv::Mat, std::string >>();
  }

  double scale = 1.3;
  std::vector<cv::Rect> faces;
  cv::Mat gray;
  std::string name;
  
  std::cout << "[";

  while (getline(fdatabase, name)){
    if (name.empty())
    {
      continue;
    }
    name.erase(0, name.find_first_not_of(" \t"));
    name.erase(name.find_last_not_of(" \t") + 1);

    // Read Image
    cv::Mat img = cv::imread(name);
    if (img.empty())
    {
      continue;
    }
    cv::Mat image;
    if (img.channels() != 1)
    {
      cvtColor(img, image, CV_BGR2GRAY);
      image.convertTo(image, CV_8UC1);
    }
    else{
      image = img;
    }
    
    // Read Opencv Detection Bbx
    cv::Mat smallImg(cvRound(image.rows / scale), cvRound(image.cols / scale), CV_8UC1); //cvRound对double型数据进行四舍五入
    cv::resize(image, smallImg, smallImg.size(), 0, 0, cv::INTER_LINEAR);
    cv::equalizeHist(smallImg, smallImg);                                              //equalizeHist提高图像的亮度和对比度
    // --Detection
    cascade.detectMultiScale(smallImg, faces,
                              1.1, 3, 0
                              /*|CV_HAAR_FIND_BIGGEST_OBJECT
                              |CV_HAAR_DO_ROUGH_SEARCH*/
                              | CV_HAAR_SCALE_IMAGE
                              ,
                              cv::Size(30, 30));
    for (std::vector<cv::Rect>::iterator r = faces.begin(); r != faces.end(); r++)
    {
      cv::Rect face;
      face.x = int(r->x * scale);
      face.y = int(r->y * scale);
      face.width = int(r->width * scale);
      face.height = int(r->height * scale);

      // 边界检查,左边界,上边界,右边界,下边界。
      /*face.x = face.x < 1 ? 1 : face.x;
      face.y = face.y < 1 ? 1 : face.y;
      face.width = (face.x + face.width) > image.cols ? (image.cols - face.x) : face.width;
      face.height = (face.y + face.height) > image.rows ? (image.rows - face.y) : face.height;*/

      cv::Mat cropFace;
      cropFace = img(face);
      /*cv::moveWindow("cropface", 960 - cropFace.cols / 2, 540 - cropFace.rows / 2);
      cv::imshow("cropface", cropFace);
      cv::waitKey(100);
      cv::destroyWindow("cropface");*/
      
      cropFaceAndImgPathName = make_pair(cropFace, name);  //cropFaceAndImgPathName = std::pair<cv::Mat, std::string>(cropFace, name);

      cropFaceAndImgPathNames.push_back(cropFaceAndImgPathName);

      std::cout << '.';
    }

  }

  fdatabase.close();
  
  std::cout << "]" << std::endl;

  return cropFaceAndImgPathNames;
}

bool matchFace(cv::Mat detectFace, cv::Mat dbFace)
{
  IplImage* srcImg = cvCloneImage(&(IplImage)detectFace);
  IplImage* dstImg = cvCloneImage(&(IplImage)dbFace);

  IplImage* src;
  IplImage* dst;

  if (srcImg->nChannels != 1)
  {
    src = cvCreateImage(cvSize(srcImg->width, srcImg->height), srcImg->depth, 1);
    cvCvtColor(srcImg, src, CV_BGR2GRAY);
  }

  if (dstImg->nChannels != 1)
  {
    dst = cvCreateImage(cvSize(dstImg->width, dstImg->height), dstImg->depth, 1);
    cvCvtColor(dstImg, dst, CV_BGR2GRAY);
  }
 
  int histogramBins = 256;
  float histogramRange1[2] = { 0, 255 };
  float *histogramRange[1] = { &histogramRange1[0] };
  CvHistogram *Histogram1 = cvCreateHist(1, &histogramBins, CV_HIST_ARRAY, histogramRange);
  CvHistogram *Histogram2 = cvCreateHist(1, &histogramBins, CV_HIST_ARRAY, histogramRange);

  cvCalcHist(&src, Histogram1);
  cvCalcHist(&dst, Histogram2);
  
  cvNormalizeHist(Histogram1, 1);
  cvNormalizeHist(Histogram2, 1);
  
  
  // CV_COMP_CHISQR,CV_COMP_BHATTACHARYYA这两种都可以用来做直方图的比较,值越小,说明图形越相似  
  //printf("CV_COMP_CHISQR : %.4f\n", cvCompareHist(Histogram1, Histogram2, CV_COMP_CHISQR));
  //printf("CV_COMP_BHATTACHARYYA : %.4f\n", cvCompareHist(Histogram1, Histogram2, CV_COMP_BHATTACHARYYA));  


  // CV_COMP_CORREL, CV_COMP_INTERSECT这两种直方图的比较,值越大,说明图形越相似  
  //printf("CV_COMP_CORREL : %.4f\n", cvCompareHist(Histogram1, Histogram2, CV_COMP_CORREL));  
  //printf("CV_COMP_INTERSECT : %.4f\n", cvCompareHist(Histogram1, Histogram2, CV_COMP_INTERSECT));
  double simility = cvCompareHist(Histogram1, Histogram2, CV_COMP_CHISQR);

  if (simility > 0.5)
  {
    return false;
  }

  return true;
}

void face_recognition(std::string recognitionPath, const std::string cascadeName)
{
  bool isPreDeal = false;
  if (isPreDeal)              //是否进行预处理
  {
    preDeal_original_img(recognitionPath, cascadeName);
    recognitionPath = "../camera_face/";
  }

  //获取数据库中人脸图像
  std::string face_Database = "../face_database/Path_Images.txt";
  std::vector<std::pair<cv::Mat, std::string>> cropFaceAndImgPathNames;
  std::cout << "开始数据库中人脸数据的读取..." << std::endl;
  cropFaceAndImgPathNames = get_CropFace_And_ImgPathName(face_Database, cascadeName);
  std::cout << "结束数据库中人脸数据的读取。" << std::endl;

  //开始人脸匹配
  std::ifstream frecognition;
  frecognition.open(recognitionPath);
  if (!frecognition)
  {
    std::cout << "Images path Error!" << std::endl;
    return;
  }

  cv::CascadeClassifier cascade;
  cascade.load(cascadeName);
  if (cascade.empty())
  {
    std::cout << "Cascade path error!" << std::endl;
    return;
  }

  double scale = 1.3;
  std::vector<cv::Rect> faces;
  cv::Mat gray;
  std::string name;

  bool isExist = false;   //数据库中是否存在该匹配文件

  while (getline(frecognition, name)){
    if (name.empty())
    {
      continue;
    }
    name.erase(0, name.find_first_not_of(" \t"));
    name.erase(name.find_last_not_of(" \t") + 1);

    // Read Image
    cv::Mat img = cv::imread(name);
    cv::Mat image;
    if (img.channels() != 1)
    {
      cvtColor(img, image, CV_BGR2GRAY);
      image.convertTo(image, CV_8UC1);
    }
    else{
      image = img;
    }
    
    // Read Opencv Detection Bbx
    cv::Mat smallImg(cvRound(image.rows / scale), cvRound(image.cols / scale), CV_8UC1); //cvRound对double型数据进行四舍五入
    cv::resize(image, smallImg, smallImg.size(), 0, 0, cv::INTER_LINEAR);
    cv::equalizeHist(smallImg, smallImg);                                              //equalizeHist提高图像的亮度和对比度
    // --Detection
    cascade.detectMultiScale(smallImg, faces,
                              1.1, 3, 0
                              /*|CV_HAAR_FIND_BIGGEST_OBJECT
                              |CV_HAAR_DO_ROUGH_SEARCH*/
                              | CV_HAAR_SCALE_IMAGE
                              ,
                              cv::Size(30, 30));
    for (std::vector<cv::Rect>::iterator r = faces.begin(); r != faces.end(); r++)
    {
      cv::Rect face;
      face.x = int(r->x * scale);
      face.y = int(r->y * scale);
      face.width = int(r->width * scale);
      face.height = int(r->height * scale);

      cv::Mat detectFace = img(face);

      for (std::vector<std::pair<cv::Mat, std::string>>::iterator dbFace = cropFaceAndImgPathNames.begin(); dbFace != cropFaceAndImgPathNames.end(); dbFace++)
      {
        std::pair<cv::Mat, std::string> dbFaceImg = *dbFace;
        bool isMatch = matchFace(detectFace, dbFaceImg.first);
        if (isMatch){
          std::cout << name + " Matching " + dbFaceImg.second + " successful!" << std::endl;
          cv::imshow("detectFace", detectFace);
          cv::imshow("databaseFace", dbFaceImg.first);
          cv::waitKey(200);
          cv::destroyWindow("detectFace");
          cv::destroyWindow("databaseFace");
          isExist = true;
        }
      }

    }
  }

  if (!isExist)
  {
    std::cout << name + " Matching failed!" << std::endl;
  }

  frecognition.close();
}


还有最后的主函数:main.cpp


#include "common.h"
#include "face_detetion_img.h"
#include "face_deteion_video.h"
#include "face_detetion_camera.h"
#include "face_recognition.h"


int main(int argc, char ** argv)
{
  
  std::string cascadeFileName = "./../haarcascade_DataBase/haarcascade_frontalface_alt.xml";
  
  //bool fileOrDir = isFileOrFolder(filePath);
  
  if (argc < 2)
  {
    printf(help);
  }
  else if (strcmp(argv[1], "face_detetion_img") == 0)
  {
    std::string imgPath = "E:/1/ImagePath.txt";
    face_detetion_img(imgPath, cascadeFileName);
  }
  else if (strcmp(argv[1], "face_detetion_video") == 0)
  {
    std::string videoPath = "E:\\DeepLeaning\\codes\\FindFaceInVideo\\VGGFace\\chengshd\\IMG_3170.mp4";
    face_detetion_video(videoPath, cascadeFileName);
  }
  else if (strcmp(argv[1], "face_detetion_camera") == 0)
  {
    face_detetion_camera(cascadeFileName);
  }
  else if (strcmp(argv[1], "face_recognition") == 0)
  {
    std::string recognitionPath = "E:/camera/Path_Images.txt";
    face_recognition(recognitionPath, cascadeFileName);
  }
  else
  {
    printf(help);
  }

  return 0;
}

如果想使用代码,适当修改一下都是可以使用的。