数据集

首先介绍一下我们的数据集,可以在我的github下载

该数据集是一个污染数据集,我们需要用该多维时间序列去预测pollution这个维度

CNN多维时间序列 多维时间序列预测_深度学习

构建训练数据

首先我们删去数据中date,wnd_dir维(注:为了演示方便故不使用wnd_dir,其实可以通过代码将其转换为数字序列)

data = pd.read_csv("./pollution.csv")
data = data.drop(['date','wnd_dir'], axis = 1)

再对于数据进行归一化处理,这里因为工程需要,笔者自写了最大最小归一化,可以使用
sklearn的归一化函数代替

#多维归一化  返回数据和最大最小值
def NormalizeMult(data):
    data = np.array(data)
    normalize = np.arange(2*data.shape[1],dtype='float64')
    normalize = normalize.reshape(data.shape[1],2)
    print(normalize.shape)
    for i in range(0,data.shape[1]):
        #第i列
        list = data[:,i]
        listlow,listhigh =  np.percentile(list, [0, 100])
        # print(i)
        normalize[i,0] = listlow
        normalize[i,1] = listhigh
        delta = listhigh - listlow
        if delta != 0:
            #第j行
            for j in range(0,data.shape[0]):
                data[j,i]  =  (data[j,i] - listlow)/delta
    #np.save("./normalize.npy",normalize)
    return  data,normalize

data,normalize = NormalizeMult(data)

对于时间序列预测而言,需要使用滑动时间窗方法,对于数据集进行构造,才可以输入到所构造的神经网络之中,该方法具体可以参见 使用LSTM进行多维多步的时间序列预测,文章里总结了数据集构造的情况

def create_dataset(dataset, look_back):
    '''
    对数据进行处理
    '''
    dataX, dataY = [], []
    for i in range(len(dataset)-look_back-1):
        a = dataset[i:(i+look_back),:]
        dataX.append(a)
        dataY.append(dataset[i + look_back,:])
    TrainX = np.array(dataX)
    Train_Y = np.array(dataY)

    return TrainX, Train_Y
    
pollution_data = data[:,0].reshape(len(data),1)

INPUT_DIMS = 7
TIME_STEPS = 20
lstm_units = 64

train_X, _ = create_dataset(data,TIME_STEPS)
_ , train_Y = create_dataset(pollution_data,TIME_STEPS)

所构建的网络输入为 [samples, timesteps, input_dims]
由于这里是使用多维数据去预测pollution维,指定 TIME_STEPS = 20,即对于单个数据,是使用7维(输入数据)的前20步去预测pollution维的后一步。

数据

shape

train_X

(43699, 20, 7)

train_Y

(43699, 1)

构造CNN+BiLSTM+Attention的预测网络

在这里整体的网络结构参考了: CoupletAI:基于CNN+Bi-LSTM+Attention 的自动对对联系统 Keras框架 深度学习模型CNN+LSTM+Attention机制 预测黄金主力收盘价

注意力机制的实现见我的博客使用Keras实现 基于注意力机制(Attention)的 LSTM 时间序列预测 在这里在输入维度方向上添加了注意力机制,即不同重要性的维度权值不同
TensorFlow版本为:1.9.0
Keras版本为:2.0.2

SINGLE_ATTENTION_VECTOR = False
def attention_3d_block(inputs):
    # inputs.shape = (batch_size, time_steps, input_dim)
    input_dim = int(inputs.shape[2])
    a = inputs
    #a = Permute((2, 1))(inputs)
    #a = Reshape((input_dim, TIME_STEPS))(a) # this line is not useful. It's just to know which dimension is what.
    a = Dense(input_dim, activation='softmax')(a)
    if SINGLE_ATTENTION_VECTOR:
        a = Lambda(lambda x: K.mean(x, axis=1), name='dim_reduction')(a)
        a = RepeatVector(input_dim)(a)
    a_probs = Permute((1, 2), name='attention_vec')(a)

    output_attention_mul = merge([inputs, a_probs], name='attention_mul', mode='mul')
    return output_attention_mul

def attention_model():
    inputs = Input(shape=(TIME_STEPS, INPUT_DIMS))

    x = Conv1D(filters = 64, kernel_size = 1, activation = 'relu')(inputs)  #, padding = 'same'
    x = Dropout(0.3)(x)

    #lstm_out = Bidirectional(LSTM(lstm_units, activation='relu'), name='bilstm')(x)
    lstm_out = Bidirectional(LSTM(lstm_units, return_sequences=True))(x)
    attention_mul = attention_3d_block(lstm_out)
    attention_mul = Flatten()(attention_mul)

    output = Dense(1, activation='sigmoid')(attention_mul)
    model = Model(inputs=[inputs], outputs=output)
    return model

进行训练

m = attention_model()
m.summary()
m.compile(optimizer='adam', loss='mse')
m.fit([train_X], train_Y, epochs=10, batch_size=64, validation_split=0.1)

网络结构如图

CNN多维时间序列 多维时间序列预测_深度学习_02


注:如上网络参数可适当缩小