SpringCloudStream&集成kafka

1、关于Spring-Cloud-Stream

Spring Cloud Stream本质上就是整合了Spring Boot和Spring Integration,实现了一套轻量级的消息驱动的微服务框架。通过使用Spring Cloud Stream,可以有效地简化开发人员对消息中间件的使用复杂度,让系统开发人员可以有更多的精力关注于核心业务逻辑的处理。

  在这里我先放一张官网的图:

  

springcloudstream kafka springcloudstream kafka 3.1_spring

应用程序通过Spring Cloud Stream注入到输入和输出通道与外界进行通信。根据此规则我们很容易的实现消息传递,订阅消息与消息中转。并且当需要切换消息中间件时,几乎不需要修改代码,只需要变更配置就行了。
 在用例图中 Inputs代表了应用程序监听消息 、outputs代表发送消息、binder的话大家可以理解为将应用程序与消息中间件隔离的抽象,类似于三层架构下利用dao屏蔽service与数据库的实现的原理。
  springcloud默认提供了rabbitmq与kafka的实现。

2、springcloud集成kafka

1、添加maven依赖:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    
    <groupId>com.zhiqiang</groupId>
    <artifactId>kafka</artifactId>
    <version>0.0.1</version>
    <name>kafka</name>
    
    <description>kafka project for Spring Boot</description>
    
    <properties>
        <java.version>1.8</java.version>
    </properties>
    <dependencies>
        <!-- boot-starter -->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter</artifactId>
            <version>2.3.2.RELEASE</version>
        </dependency>
        <!--spring cloud Hoxton.SR10-->
        <dependency>
            <groupId>org.springframework.cloud</groupId>
            <artifactId>spring-cloud-dependencies</artifactId>
            <version>2020.0.2</version>
            <type>pom</type>
            <scope>import</scope>
        </dependency>
        <!-- boot-starter-web -->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
            <version>2.3.2.RELEASE</version>
        </dependency>
        <!-- kafka -->
        <dependency>
            <groupId>org.springframework.kafka</groupId>
            <artifactId>spring-kafka</artifactId>
            <version>2.6.2</version>
        </dependency>
        <!-- gson -->
        <dependency>
            <groupId>com.google.code.gson</groupId>
            <artifactId>gson</artifactId>
            <version>2.8.7</version>
        </dependency>
        <!-- lombok -->
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <version>1.18.20</version>
        </dependency>
        <!-- stream-binder-kafka -->
        <dependency>
            <groupId>org.springframework.cloud</groupId>
            <artifactId>spring-cloud-stream-binder-kafka</artifactId>
            <version>3.1.3</version>
        </dependency>
        
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <version>2.3.2.RELEASE</version>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>org.springframework.kafka</groupId>
            <artifactId>spring-kafka-test</artifactId>
            <version>2.6.9</version>
            <scope>test</scope>
        </dependency>
    </dependencies>
   
</project>

2、定义一个接口:

spring-cloud-stream已经给我们定义了最基本的输入与输出接口,他们分别是 Source,Sink, Processor
  Sink接口:

package com.zhiqiang.kafka.demo;


import org.springframework.messaging.SubscribableChannel;
import org.springframework.cloud.stream.annotation.Input;

public interface Sink {
    String INPUT = "input";
    
    @Input()
    SubscribableChannel input();
}

Source接口:

package com.zhiqiang.kafka.demo;


import org.springframework.cloud.stream.annotation.Output;
import org.springframework.messaging.MessageChannel;

public interface Source {
    String OUTPUT="output";

    @Output("output")
    MessageChannel output();
}

Processor接口:
这里面Processor这个接口既定义输入通道又定义了输出通道。同时我们也可以自己定义通道接口,代码如下:

package com.zhiqiang.kafka.demo;


import org.springframework.cloud.stream.annotation.Input;
import org.springframework.cloud.stream.annotation.Output;
import org.springframework.messaging.MessageChannel;
import org.springframework.messaging.SubscribableChannel;

public interface ShopChannel {
    /**
     * 发消息的通道名称
     */
    String SHOP_OUTPUT = "shop_output";
    /**
     * 消息的订阅通道名称
     */
    String SHOP_INPUT = "shop_input";
    /**
     * 发消息的通道
     *
     * @return
     */
    @Output(SHOP_OUTPUT)
    MessageChannel sendShopMessage();
    /**
     * 收消息的通道
     *
     * @return
     */
    @Input(SHOP_INPUT)
    SubscribableChannel recieveShopMessage();
}

3、定义服务类

package com.zhiqiang.kafka.demo;


import org.springframework.cloud.stream.annotation.StreamListener;
import org.springframework.messaging.Message;
import org.springframework.messaging.MessageChannel;
import org.springframework.messaging.support.MessageBuilder;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import javax.annotation.Resource;

@RestController
@RequestMapping("/kafka")
public class ShopService {

    @Resource(name = ShopChannel.SHOP_OUTPUT)
    private MessageChannel sendShopMessageChannel;
    
    @GetMapping("/sendMsg")
    public String sendShopMessage(String content){
        System.out.println("content = " + content);
        boolean isSuccess = sendShopMessageChannel.send(MessageBuilder.withPayload(content).build());
        return isSuccess ? "发送成功":"发送失败";
    }


    @StreamListener(ShopChannel.SHOP_INPUT)
    public void  receive(Message<String> message){
        System.out.println("message.getPayload() = "+message.getPayload());
    }
    @GetMapping("/test")
    public void test(){
        System.out.println("test....");
    }
}

这里面大家注意 @StreamListener。这个注解可以监听输入通道里的消息内容,注解里面的属性指定我们刚才定义的输入通道名称,而MessageChannel则可以通过输出通道发送消息。使用@Resource注入时需要指定我们刚才定义的输出通道名称

4、定义启动类

package com.zhiqiang.kafka.demo;


import com.zhiqiang.kafka.demo.ShopChannel;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.stream.annotation.EnableBinding;

@SpringBootApplication
@EnableBinding(ShopChannel.class) 
public class ShopServerApplication {
    public static void main(String[] args) {
        SpringApplication.run(ShopServerApplication.class, args);
    }
}

5、定义application.yml文件

#spring
spring:
  application:
    name: shop-server
  cloud:
    stream:
      bindings:
        #配置自己定义的通道与哪个中间件交互
        shop_input: 
          destination: zhibo #目标主题
        shop_output:
          destination: zhibo 
      default-binder: kafka 
  kafka:
    bootstrap-servers: 192.168.52.128:9092 #kafka服务地址
    consumer:
      group-id: consumer1
    producer:
      key-serializer: org.apache.kafka.common.serialization.ByteArraySerializer
      value-serializer: org.apache.kafka.common.serialization.ByteArraySerializer
      client-id: producer1
#服务端口
server:
  port: 8089
logging:
  level: debug

这里是重头戏,我们必须指定所有通道对应的消息主题,同时指定默认的binder为kafka,紧接着定义Spring-kafka的外部化配置,在这里指定producer的序列化类为ByteArraySerializer

启动程序成功后,我们访问 GET

http://localhost:8089/kafka/sendMsg?content=2 即可
springcloudstream kafka springcloudstream kafka 3.1_java_02