SIFT特征对旋转、尺度缩放、亮度变化等保持不变性,是一种非常稳定的局部特征。

尺度空间中各尺度图像的模糊程度逐渐变大,能够模拟人在距离目标由近到远时目标在视网膜上的形成过程。尺度越大图像越模糊。

WHY?

用机器视觉系统分析未知场景时,计算机并不预先知道图像中物体的尺度。我们需要同时考虑图像在多尺度下的描述,获知感兴趣物体的最佳尺度。另外如果不同的尺度下都有同样的关键点,那么在不同的尺度的输入图像下就都可以检测出来关键点匹配,也就是尺度不变性。

高斯金字塔

八度(octave) 简单地说八度就是在特定尺寸(长宽)下,经不同高斯核模糊的图像的集合。八度的集合是高斯金字塔。

高斯金字塔就是为了在二维图像的基础之上,榨取出图像中自然存在的另一个维度:尺度。因为高斯核是唯一的线性核,也就是说使用高斯核对图像模糊不会引入其他噪声,因此就选用了高斯核来构建图像的尺度。高斯卷积核是尺度变换的唯一的线性核。

高斯金字塔构建过程:一般首先将图像扩大一倍,在扩大的图像的基础之上构建高斯金字塔,然后对该尺寸下图像进行高斯模糊,几幅模糊之后的图像集合构成了一个八度,然后对该八度下的最模糊的一幅图像进行下采样的过程,长和宽分别缩短一倍,图像面积变为原来四分之一。这幅图像就是下一个八度的初始图像,在初始图像图像的基础上完成属于这个八度的高斯模糊处理,以此类推完成整个算法所需要的所有八度构建,这样这个高斯金字塔就构建出来了。构建出的金字塔如下图所示:

高斯金字塔 Pytorch_高斯金字塔

尺度空间

第几个八度(o)和八度中的第几层(s),这两个量合起来(o,s)就构成了高斯金字塔的尺度空间。

首先一个八度中图像的长和宽是相等的,即变量o控制的是塔中尺寸这个尺度;s区分同一个尺寸尺度下的图像,控制了一个八度中不同的模糊程度。这样(o,s)就能够确定高斯金字塔中的唯一一幅图像,这是个三维空间,两维坐标,一维是图像。

根据lowe的论文,(o,s)作用于一幅图像是通过公式

高斯金字塔 Pytorch_差分_02

确定的。通过公式也可以看出,尺度空间是连续的,两个变量控制着δ的值,其中在第一个八度中有 1<(o+s/S)<=2 ,同理在第二个八度中有2<(o+s/S)<=3,以此类推,δ中的关键部分(o+s/S)部分是逐渐增大的(具体实现时,有些高斯金字塔中这个值是增大,但不是逐渐均匀增大,只能说是连续的)。

上图中第一个八度的中图像的尺度分别是δ,kδ,k^2δ......,第二个八度的尺度分别是2δ,2kδ,2k^2δ........,同理第三个八度的尺度分别是4δ,4kδ,4k^2δ........。这个序列是通过下式来确定的:

高斯金字塔 Pytorch_差分_03

所以每增加一级八度,δ都要扩大2倍,在一个八度中,k的上标s来区分不同的高斯核。

高斯核是圆对称的,在图片像素中展现出来的是一个正方形,其大小由高斯模板确定。卷积的结果使原始像素值有最大的权重,距离中心越远的相邻像素值权重也越小。

高斯金字塔 Pytorch_高斯金字塔_04

构建差分高斯金字塔

构建高斯金字塔是为了后续构建差分高斯金字塔。对同一个八度的两幅相邻的图像做差得到插值图像,所有八度的这些插值图像的集合,就构成了差分高斯金字塔。过程如下图所示,差分高斯金字塔的好处是为后续的特征点的提取提供了方便。

高斯金字塔 Pytorch_尺度空间_05

尺度空间的连续性

这里注意,连续性的主语既不是高斯金字塔,也不是差分高斯金字塔,而是尺度空间。

选用每个八度的倒数第三幅图像进行下采样。