【说明】:疫情期间比较闲学习了python。LPR这个东西,基于OpenCV已经做过很多遍了,通过这个小项目利用树莓派来熟悉Python编程,而且通过实际操作可以掌握一些具体的细节与技巧,这里我将整个过程碰到问题时,甄选搜集的比较好的链接也一并放在文中。完整项目在GitHub上已经满多了。有几个开源的基于OpenCV的车牌识别项目像OpenALPR、HyperLPR等可以直接下来演示,这里主要参考了文1,文1使用代码中对于车牌定位、字符分割的做法比较通用,核心是用SVM向量机来做字符识别,此外用了tkinter GUI库来搭建了个窗口交互显示,完整性非常好,本文做了简化,直接取摄像头视频流进行处理后显示在窗口上。
本文环境:python2.7(感觉3问题也不大,可以自己改一改);opencv 3.4.1;树莓派-4;识别距离最少40厘米,直接手画了车牌进行演示,很low,估计换成标准车牌图像测试会提高准确率,而且直接使用了文1中的SVM训练好后模型数据,应该这块改进也能提高识别概率,最终表现是,中文字符的识别率较差,英文与数字较好,数字可以达到90%以上。
网文引用格式:序号-贴名(标注)——作者
1. 安装摄像头与水墨指示屏
一、安装摄像头
对树莓派常见的就是用CSI或USB接口来外接摄像头,对于CSI接口,基本可以和买树莓派时一块带着买,也可以买专门的USB接口的摄像头。
二、安装黑白双色墨水屏
我们的HDMI用来输出图像或视频流,一直想去玩一下水墨屏(1.54英寸e-Paper模块),这次也就顺便用了一块1.54寸SPI口的屏,用来辅助显示一些调试参数,十分小巧,缺点就是贵一些。水墨屏是微雪的,可以直接下载演示示例程序V2。下面的程序是按照树莓派必须的库,可以参考上面示例程序页面的步骤。这块可有可无,但用的话一定要注意刷新显示的频率,不能太高,否则会造成识别时的卡顿,这块墨水屏的整幅图像刷新貌似要2s以上,确实慢。
图1-1.54寸水墨屏
# python2
sudo apt-get update # 最近做过就不必了
# 下面一般都已经装好了,可以aptitude search packname 一下
sudo apt-get install python-pip
sudo apt-get install python-pil
sudo apt-get install python-numpy
# pip list 查看是否安装所需的py库
sudo pip install RPi.GPIO
sudo pip install spidev
# 官网上直接给了Demo可以直接运行看看接线正常
2. 安装OpenCV(3.4.1)
作为一个跨平台的视觉库,OpenCV提供了Python、Ruby、MATLAB等语言的API接口;这里下载的OpenCV的版本是3.4.1,新版本是opencv-4.3.0(2020年4月6号),建议还是用新版本。首先可以直接用python的pip直接安装opencv-python,我完事后才发现了这样真方便,参考文4。下面是使用传统解压安装的方法,之后再按照下面链接里的文1-3安装,对于其他在安装过程中缺失的文件,也可用步骤3里的方法可以解决,也就是从opencv_contrib拓展包里copy需要的文件,如图所示;而对于编译错误的问题,步骤1的最后给出了解决办法,基本上安装碰到的问题基本都能找到解决方法;附带说明opencv_contrib是基本版的拓展,包含了付费或仍在测试算法。OpenCV是C++写的,所以这种方法需要解压后还需要编译,才可以调用执行。
3. 编写脚本
有OpenCV的加持,车牌识别过程代码相当精悍,这里额外注意些版本问题,包括使用的OpenCV版本和python版本,这可能会使一些copy的代码报错,耐心改一下就行。我已经看到几个项目中都使用这样的代码,我能找到的来源来自yinghualuowu。
# filename:predict.py
# author:yinghualuowu , zhenghao
# date:04/25/2020
#!/usr/bin/python
# -*- coding: utf-8 -*-
import cv2
import numpy as np
from numpy.linalg import norm
import os
import json
import copy
from PIL import Image, ImageDraw, ImageFont
SZ = 20 # 训练图片长宽
MAX_WIDTH = 1000 # 原始图片最大宽度
Min_Area = 2000 # 车牌区域至少的像素面积,车牌在图像中所占的面积显然与距离有关
PROVINCE_START = 1000
def imreadex(filename):
return cv2.imdecode(np.fromfile(filename, dtype=np.uint8), cv2.IMREAD_COLOR)
def point_limit(point):
if point[0] < 0:
point[0] = 0
if point[1] < 0:
point[1] = 0
# 根据设定的阈值和图片直方图,找出波峰,用于分隔字符
def find_waves(threshold, histogram):
up_point = -1 # 上升点
is_peak = False
if histogram[0] > threshold:
up_point = 0
is_peak = True
wave_peaks = []
for i, x in enumerate(histogram):
if is_peak and x < threshold:
if i - up_point > 2:
is_peak = False
wave_peaks.append((up_point, i))
elif not is_peak and x >= threshold:
is_peak = True
up_point = i
if is_peak and up_point != -1 and i - up_point > 4:
wave_peaks.append((up_point, i))
return wave_peaks
# 根据找出的波峰,分隔图片,从而得到逐个字符图片
def seperate_card(img, waves):
part_cards = []
for wave in waves:
part_cards.append(img[:, wave[0]:wave[1]])
return part_cards
# 返回一个列表中出现次数最多的字符串
def findmaxstr(lt):
index1 = 0 # 记录出现次数最多的元素下标
max = 0 # 记录最大的元素出现次数
for i in range(len(lt)):
flag = 0 # 记录每一个元素出现的次数
for j in range(i + 1, len(lt)): # 遍历i之后的元素下标
if lt[j] == lt[i]:
flag += 1 # 每当发现与自己相同的元素,flag+1
if flag > max: # 如果此时元素出现的次数大于最大值,记录此时元素的下标
max = flag
index1 = i
return lt[index1] # 返回出现最多的元素
# cv2解决绘制中文乱码
def cv2ImgAddText(img, text, left, top, textColor=(0, 255, 0), textSize=20):
if (isinstance(img, np.ndarray)): # 判断是否OpenCV图片类型
img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
# 创建一个可以在给定图像上绘图的对象
draw = ImageDraw.Draw(img)
# 字体的格式
fontStyle = ImageFont.truetype(
"lib_E-ink/pic/Font.ttc", textSize, encoding="utf-8") # 这里换成自己字体文件的目录
# 绘制文本
draw.text((left, top), text, textColor, font=fontStyle)
# 转换回OpenCV格式
return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
#================================================================================
# 来自opencv的sample,用于svm训练
def deskew(img):
m = cv2.moments(img)
if abs(m['mu02']) < 1e-2:
return img.copy()
skew = m['mu11'] / m['mu02']
M = np.float32([[1, skew, -0.5 * SZ * skew], [0, 1, 0]])
img = cv2.warpAffine(img, M, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
return img
# 来自opencv的sample,用于svm训练
def preprocess_hog(digits):
samples = []
for img in digits:
gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
mag, ang = cv2.cartToPolar(gx, gy)
bin_n = 16
bin = np.int32(bin_n * ang / (2 * np.pi))
bin_cells = bin[:10, :10], bin[10:, :10], bin[:10, 10:], bin[10:, 10:]
mag_cells = mag[:10, :10], mag[10:, :10], mag[:10, 10:], mag[10:, 10:]
hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
hist = np.hstack(hists)
# transform to Hellinger kernel
eps = 1e-7
hist /= hist.sum() + eps
hist = np.sqrt(hist)
hist /= norm(hist) + eps
samples.append(hist)
return np.float32(samples)
#================================================================================
# 不能保证包括所有省份
provinces = [
"zh_cuan", "川","zh_e", "鄂",
"zh_gan", "赣","zh_gan1", "甘",
"zh_gui", "贵", "zh_gui1","桂",
"zh_hei", "黑","zh_hu", "沪",
"zh_ji", "冀","zh_jin", "津",
"zh_jing", "京","zh_jl", "吉",
"zh_liao", "辽","zh_lu", "鲁",
"zh_meng", "蒙","zh_min", "闽",
"zh_ning", "宁","zh_qing", "靑",
"zh_qiong","琼","zh_shan", "陕",
"zh_su", "苏","zh_sx", "晋",
"zh_wan", "皖","zh_xiang","湘",
"zh_xin", "新","zh_yu", "豫",
"zh_yu1", "渝","zh_yue", "粤",
"zh_yun", "云","zh_zang", "藏",
"zh_zhe", "浙"
]
class StatModel(object):
def load(self, fn):
self.model = self.model.load(fn)
def save(self, fn):
self.model.save(fn)
class SVM(StatModel): # SVM设置
def __init__(self, C=1, gamma=0.5):
self.model = cv2.ml.SVM_create()
self.model.setGamma(gamma)
self.model.setC(C)
self.model.setKernel(cv2.ml.SVM_RBF)
self.model.setType(cv2.ml.SVM_C_SVC)
# 训练svm
def train(self, samples, responses):
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses)
# 字符识别
def predict(self, samples):
r = self.model.predict(samples)
return r[1].ravel()
# 将图片识别的函数与属性封装起来
class CardPredictor:
def __init__(self):
# 车牌识别的部分参数保存在js中,便于根据图片分辨率做调整
f = open('config.js')
j = json.load(f)
for c in j["config"]:
print(c)
if c["open"]:
self.cfg = c.copy()
break
else:
raise RuntimeError('没有设置有效配置参数')
def __del__(self):
self.save_traindata()
def train_svm(self):
self.model = SVM(C=1, gamma=0.5) # 识别英文字母和数字
self.modelchinese = SVM(C=1, gamma=0.5) # 识别中文
if os.path.exists("svm.dat"):
self.model.load("svm.dat")
else:
chars_train = []
chars_label = []
for root, dirs, files in os.walk("train\\chars2"):
if len(os.path.basename(root)) > 1:
continue
root_int = ord(os.path.basename(root))
for filename in files:
filepath = os.path.join(root, filename)
digit_img = cv2.imread(filepath)
digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY)
chars_train.append(digit_img)
# chars_label.append(1)
chars_label.append(root_int)
chars_train = list(map(deskew, chars_train))
chars_train = preprocess_hog(chars_train)
# chars_train = chars_train.reshape(-1, 20, 20).astype(np.float32)
chars_label = np.array(chars_label)
print(chars_train.shape)
self.model.train(chars_train, chars_label)
if os.path.exists("svmchinese.dat"):
self.modelchinese.load("svmchinese.dat")
else:
chars_train = []
chars_label = []
for root, dirs, files in os.walk("train\\charsChinese"):
if not os.path.basename(root).startswith("zh_"):
continue
pinyin = os.path.basename(root)
index = provinces.index(pinyin) + PROVINCE_START + 1 # 1是拼音对应的汉字
for filename in files:
filepath = os.path.join(root, filename)
digit_img = cv2.imread(filepath)
digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY)
chars_train.append(digit_img)
# chars_label.append(1)
chars_label.append(index)
chars_train = list(map(deskew, chars_train))
chars_train = preprocess_hog(chars_train)
# chars_train = chars_train.reshape(-1, 20, 20).astype(np.float32)
chars_label = np.array(chars_label)
print(chars_train.shape)
self.modelchinese.train(chars_train, chars_label)
def save_traindata(self):
if not os.path.exists("svm.dat"):
self.model.save("svm.dat")
if not os.path.exists("svmchinese.dat"):
self.modelchinese.save("svmchinese.dat")
def accurate_place(self, card_img_hsv, limit1, limit2, color):
row_num, col_num = card_img_hsv.shape[:2]
xl = col_num
xr = 0
yh = 0
yl = row_num
# col_num_limit = self.cfg["col_num_limit"]
row_num_limit = self.cfg["row_num_limit"]
col_num_limit = col_num * 0.8 if color != "green" else col_num * 0.5 # 绿色有渐变
for i in range(row_num):
count = 0
for j in range(col_num):
H = card_img_hsv.item(i, j, 0)
S = card_img_hsv.item(i, j, 1)
V = card_img_hsv.item(i, j, 2)
if limit1 < H <= limit2 and 34 < S and 46 < V:
count += 1
if count > col_num_limit:
if yl > i:
yl = i
if yh < i:
yh = i
for j in range(col_num):
count = 0
for i in range(row_num):
H = card_img_hsv.item(i, j, 0)
S = card_img_hsv.item(i, j, 1)
V = card_img_hsv.item(i, j, 2)
if limit1 < H <= limit2 and 34 < S and 46 < V:
count += 1
if count > row_num - row_num_limit:
if xl > j:
xl = j
if xr < j:
xr = j
return xl, xr, yh, yl
def predict(self, car_pic):
# step1-图像缩放
if type(car_pic) == type(''):
img = imreadex(car_pic)
else:
img = car_pic
cv2.imshow("树莓派车牌识别", img)
pic_hight, pic_width = img.shape[:2]
if pic_width > MAX_WIDTH:
resize_rate = MAX_WIDTH / pic_width
img = cv2.resize(img, (MAX_WIDTH, int(pic_hight * resize_rate)), interpolation=cv2.INTER_AREA)
# step2-高斯去噪 & 除掉图像中不会是车牌的区域
blur = self.cfg["blur"]
if blur > 0:
img = cv2.GaussianBlur(img, (blur, blur), 0) # 图像分辨率调整
oldimg = img
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 图像转灰度图
kernel = np.ones((20, 20), np.uint8)
img_opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel) # 图像滤波
img_opening = cv2.addWeighted(img, 1, img_opening, -1, 0) # 图像融合
# step3-找到图像边缘
ret, img_thresh = cv2.threshold(img_opening, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
img_edge = cv2.Canny(img_thresh, 100, 200) # 边缘检测
# 使用开运算和闭运算让图像边缘成为一个整体
kernel = np.ones((self.cfg["morphologyr"], self.cfg["morphologyc"]), np.uint8)
img_edge1 = cv2.morphologyEx(img_edge, cv2.MORPH_CLOSE, kernel)
img_edge2 = cv2.morphologyEx(img_edge1, cv2.MORPH_OPEN, kernel)
# step4-查找图像边缘整体形成的矩形区域,可能有很多,车牌就在其中一个矩形区域中
image, contours, hierarchy = cv2.findContours(img_edge2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours = [cnt for cnt in contours if cv2.contourArea(cnt) > Min_Area]
print(u'检测到可能的车牌区域数目:{0:d}'.format(len(contours)))
car_contours = [] # 保存确定的车牌区域
oldimg1 = copy.copy(oldimg) # 拷贝一份
for cnt in contours: # 逐一排除不是车牌的矩形区域
rect = cv2.minAreaRect(cnt) # 图像区域的最小外接矩形;rect包含中心点坐标,宽高,旋转角度信息
area_width, area_height = rect[1]
if area_width < area_height: # 防止图像中车牌竖放的情况
area_width, area_height = area_height, area_width
wh_ratio = area_width / area_height # 要求矩形区域长宽比在2到5.5之间,2到5.5是车牌的长宽比,其余的矩形排除
if wh_ratio > 2 and wh_ratio < 5.5:
car_contours.append(rect)
box = cv2.boxPoints(rect) # 获取矩形四个顶点,浮点型
box = np.int0(box) # 取整
oldimg = cv2.drawContours(oldimg, [box], 0, (0, 0, 255), 2) # 框选出识别的车牌
cv2.imshow("树莓派车牌识别", oldimg)
print(u'精确定位后车牌区域数目:{0:d}'.format(len(car_contours)))
# step5-矩形区域可能是倾斜的矩形,需要进行矫正
card_imgs = []
for rect in car_contours:
if rect[2] > -1 and rect[2] < 1: # 创造角度,使得左、高、右、低拿到正确的值
angle = 1
else:
angle = rect[2]
rect = (rect[0], (rect[1][0] + 5, rect[1][1] + 5), angle) # 扩大范围,避免车牌边缘被排除
box = cv2.boxPoints(rect)
heigth_point = right_point = [0, 0]
left_point = low_point = [pic_width, pic_hight]
for point in box:
if left_point[0] > point[0]:
left_point = point
if low_point[1] > point[1]:
low_point = point
if heigth_point[1] < point[1]:
heigth_point = point
if right_point[0] < point[0]:
right_point = point
if left_point[1] <= right_point[1]: # 正角度
new_right_point = [right_point[0], heigth_point[1]]
pts2 = np.float32([left_point, heigth_point, new_right_point]) # 字符只是高度需要改变
pts1 = np.float32([left_point, heigth_point, right_point])
M = cv2.getAffineTransform(pts1, pts2) # 计算变换矩阵
dst = cv2.warpAffine(oldimg1, M, (pic_width, pic_hight)) # 进行仿射变换
point_limit(new_right_point)
point_limit(heigth_point)
point_limit(left_point)
card_img = dst[int(left_point[1]):int(heigth_point[1]), int(left_point[0]):int(new_right_point[0])]
card_imgs.append(card_img)
elif left_point[1] > right_point[1]: # 负角度
new_left_point = [left_point[0], heigth_point[1]]
pts2 = np.float32([new_left_point, heigth_point, right_point]) # 字符只是高度需要改变
pts1 = np.float32([left_point, heigth_point, right_point])
M = cv2.getAffineTransform(pts1, pts2)
dst = cv2.warpAffine(oldimg1, M, (pic_width, pic_hight))
point_limit(right_point)
point_limit(heigth_point)
point_limit(new_left_point)
card_img = dst[int(right_point[1]):int(heigth_point[1]), int(new_left_point[0]):int(right_point[0])]
card_imgs.append(card_img)
# step6-1-根据车牌颜色定位,用来排除不是车牌的区域,目前只识别蓝、绿、黄车牌
colors = []
for card_index, card_img in enumerate(card_imgs): # 对提取的每个车牌区域进行识别
green = yello = blue = black = white = 0
card_img_hsv = cv2.cvtColor(card_img, cv2.COLOR_BGR2HSV) # 颜色空间转换,由于上一步矫正矩形的原因,有转换失败的可能,
if card_img_hsv is None:
continue
row_num, col_num = card_img_hsv.shape[:2]
card_img_count = row_num * col_num # 我猜是整个区域的像素点数,瞎猜的哈哈
for i in range(row_num): # 对该车牌区域的每个像素点进行H色度、S饱和度、V亮度的判断
for j in range(col_num):
H = card_img_hsv.item(i, j, 0)
S = card_img_hsv.item(i, j, 1)
V = card_img_hsv.item(i, j, 2)
if 11 < H <= 34 and S > 34: # 图片分辨率调整
yello += 1
elif 35 < H <= 99 and S > 34: # 图片分辨率调整
green += 1
elif 99 < H <= 124 and S > 34: # 图片分辨率调整
blue += 1
if 0 < H < 180 and 0 < S < 255 and 0 < V < 46:
black += 1
elif 0 < H < 180 and 0 < S < 43 and 221 < V < 225:
white += 1
color = "no"
limit1 = limit2 = 0
if yello * 2 >= card_img_count: # 某种颜色成分占50%以上
color = "yello"
limit1 = 11
limit2 = 34 # 黄:有的图片有色偏偏绿
elif green * 2 >= card_img_count:
color = "green"
limit1 = 35
limit2 = 99 # 绿:有的图片有色偏偏绿
elif blue * 2 >= card_img_count:
color = "blue"
limit1 = 100
limit2 = 124 # 蓝:有的图片有色偏偏紫
elif black + white >= card_img_count * 0.7: # TODO
color = "bw" # 黑白
if limit1 == 0: # 未检测出颜色,直接跳过该车牌区域,不做进一部处理
continue
colors.append(color) # 保存该车牌区域的识别颜色结果
print(u'检测到的车牌(编号{0:d})颜色为{1}'.format(card_index+1,color))
print(u'|蓝色:{0:.1%}|绿色:{1:.1%}|黄色:{2:.1%}|黑色:{3:.1%}|白色:{4:.1%}|'.format(float(blue)/card_img_count,
float(green)/card_img_count,float(yello)/card_img_count, float(black)/card_img_count,float(white)/card_img_count))
# step6-2-以下为根据检测出的车牌颜色再定位,缩小边缘非车牌边界
xl, xr, yh, yl = self.accurate_place(card_img_hsv, limit1, limit2, color)
if yl == yh and xl == xr:
continue
need_accurate = False
if yl >= yh:
yl = 0
yh = row_num
need_accurate = True
if xl >= xr:
xl = 0
xr = col_num
need_accurate = True
card_imgs[card_index] = card_img[yl:yh, xl:xr] if color != "green" or yl < (yh - yl) // 4 else card_img[yl - (yh - yl) // 4:yh,xl:xr]
if need_accurate: # 可能x或y方向未缩小,需要再试一次
card_img = card_imgs[card_index]
card_img_hsv = cv2.cvtColor(card_img, cv2.COLOR_BGR2HSV)
xl, xr, yh, yl = self.accurate_place(card_img_hsv, limit1, limit2, color)
if yl == yh and xl == xr:
continue
if yl >= yh:
yl = 0
yh = row_num
if xl >= xr:
xl = 0
xr = col_num
card_imgs[card_index] = card_img[yl:yh, xl:xr] if color != "green" or yl < (yh - yl) // 4 else card_img[yl - (yh - yl) // 4:yh,xl:xr]
# step7-以上为车牌定位,以下为车牌字符识别
predict_result = []
predict_result_group = []
LRPresult = None
roi = None
card_color = None
for i, color in enumerate(colors):
if color in ("blue", "yello", "green"):
card_img = card_imgs[i]
gray_img = cv2.cvtColor(card_img, cv2.COLOR_BGR2GRAY)
if color == "green" or color == "yello": # 黄、绿车牌字符比背景暗,与蓝车牌刚好相反,所以黄、绿车牌需要反向
gray_img = cv2.bitwise_not(gray_img)
ret, gray_img = cv2.threshold(gray_img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# step7-1 查找水平直方图波峰,因为处理后文字区域正常都是白色,那么在直方图上就显示为波峰,波峰数目就是字符数目
x_histogram = np.sum(gray_img, axis=1)
x_min = np.min(x_histogram)
x_average = np.sum(x_histogram) / x_histogram.shape[0]
x_threshold = (x_min + x_average) / 2
wave_peaks = find_waves(x_threshold, x_histogram)
if len(wave_peaks) == 0: # 正常应该为1,这里为0不正常跳过
print(u'查找水平直方图波峰结果异常:{0:d}处(应为1处\n)'.format(len(wave_peaks)))
continue
wave = max(wave_peaks, key=lambda x: x[1] - x[0]) # 认为水平方向,最大的波峰为车牌区域
gray_img = gray_img[wave[0]:wave[1]]
# step7-2 查找垂直直方图波峰
row_num, col_num = gray_img.shape[:2]
gray_img = gray_img[1:row_num - 1] # 去掉车牌上下边缘1个像素,避免白边影响阈值判断
y_histogram = np.sum(gray_img, axis=0)
y_min = np.min(y_histogram)
y_average = np.sum(y_histogram) / y_histogram.shape[0]
y_threshold = (y_min + y_average) / 5 # U和0要求阈值偏小,否则U和0会被分成两半
wave_peaks = find_waves(y_threshold, y_histogram)
if len(wave_peaks) <= 6: # 车牌字符数应为7 赣A 17544
print(u'查找垂直直方图波峰结果异常:{0:d}处(应为7处)\n'.format(len(wave_peaks)))
continue
wave = max(wave_peaks, key=lambda x: x[1] - x[0])
max_wave_dis = wave[1] - wave[0]
# 判断是否是左侧车牌边缘
if wave_peaks[0][1] - wave_peaks[0][0] < max_wave_dis / 3 and wave_peaks[0][0] == 0:
wave_peaks.pop(0)
# step7-3 组合分离汉字
cur_dis = 0
for i, wave in enumerate(wave_peaks):
if wave[1] - wave[0] + cur_dis > max_wave_dis * 0.6:
break
else:
cur_dis += wave[1] - wave[0]
if i > 0:
wave = (wave_peaks[0][0], wave_peaks[i][1])
wave_peaks = wave_peaks[i + 1:]
wave_peaks.insert(0, wave)
# 去除车牌上的分隔点
point = wave_peaks[2]
if point[1] - point[0] < max_wave_dis / 3:
point_img = gray_img[:, point[0]:point[1]]
if np.mean(point_img) < 255 / 5:
wave_peaks.pop(2)
if len(wave_peaks) <= 6:
print(u'查找垂直直方图波峰结果异常:{0:d}处(应为7处)\n'.format(len(wave_peaks)))
continue
part_cards = seperate_card(gray_img, wave_peaks) # 返回分割后的字符区域图像
for k in range(25): # 取25次中的模态
for i, part_card in enumerate(part_cards): # 字符识别
if np.mean(part_card) < 255 / 5: # 可能是固定车牌的铆钉,都抛弃
print(u'识别出点状图像')
continue
part_card_old = part_card
w = abs(part_card.shape[1] - SZ) // 2
part_card = cv2.copyMakeBorder(part_card, 0, 0, w, w, cv2.BORDER_CONSTANT, value=[0, 0, 0])
part_card = cv2.resize(part_card, (SZ, SZ), interpolation=cv2.INTER_AREA)
# part_card = deskew(part_card)
part_card = preprocess_hog([part_card])
if i == 0: # 第一个字符显然是中文
resp = self.modelchinese.predict(part_card)
charactor = provinces[int(resp[0]) - PROVINCE_START]
else: # 字母与数字
resp = self.model.predict(part_card)
charactor = chr(resp[0])
# 判断最后一个数是否是车牌边缘,假设车牌边缘被认为是1
if charactor == "1" and i == len(part_cards) - 1:
if part_card_old.shape[0] / part_card_old.shape[1] >= 7: # 1太细,认为是边缘
continue
predict_result.append(charactor)
LRPresult = ''.join(predict_result)
predict_result_group.append(LRPresult)
LRPresult = findmaxstr(predict_result_group) # 取出出现最多的识别结果
finalimg = cv2ImgAddText(oldimg, LRPresult.decode('utf-8'), 50, 50, (0, 0, 255), 40)
cv2.imshow("树莓派车牌识别", finalimg)
roi = card_img
card_color = color
break
return LRPresult, roi, card_color # 识别到的字符、定位的车牌图像、车牌颜色
##================================== FILE END ===================================
最终实现的效果还是符合预期的,花了一周时间终于完成了。在实际运行时还是会有些bug,但总体不影响运行。
图3-车牌识别结果
图4-墨水屏显示车牌识别结果