python ThreadPoolExecutor的简单使用
一、前言
Python3.2以后,官方新增了concurrent.futures模块,该模块提供线程池ThreadPoolExecutor和进程池ProcessPoolExecutor 。使用起来非常方便。以下是个人对于线程池ThreadPoolExecutor的使用笔记。官网
二、基本使用
1、简单使用线程池
只需要两步,即可简单使用线程池
- 通过ThreadPoolExecutor()创建线程池
- 通过submit提交任务到线程池
import threading
import time
from concurrent.futures import ThreadPoolExecutor
def log(msg):
t = threading.currentThread()
name = t.name
ident = t.ident
print(f"[{ident}][{name}]{msg}") # 打印线程号和线程名称
def job(name, second):
log(f"I am {name} begin")
time.sleep(second)
log(f"I am {name} end")
def main():
executor = ThreadPoolExecutor(max_workers=5, thread_name_prefix="MyThread")
executor.submit(job, "墨玉麒麟", 3)
executor.submit(job, "张良", 7)
executor.submit(job, "猴子", 5)
log("主线程运行中.")
log("主线程运行中..")
log("主线程运行中...")
if __name__ == '__main__':
main()
运行
2、查看子线程是否运行结束
- 通过done函数判断子线程是否运行结束
import threading
import time
from concurrent.futures import ThreadPoolExecutor
def log(msg):
t = threading.currentThread()
name = t.name
ident = t.ident
print(f"[{ident}][{name}]{msg}") # 打印线程号和线程名称
def job(name, second):
log(f"I am {name} begin")
time.sleep(second)
log(f"I am {name} end")
def main():
executor = ThreadPoolExecutor(max_workers=5, thread_name_prefix="MyThread")
t1 = executor.submit(job, "墨玉麒麟", 3)
t2 = executor.submit(job, "张良", 7)
t3 = executor.submit(job, "猴子", 5)
log("主线程运行中.")
time.sleep(4)
log("主线程运行中..")
log(f"{t1.done()}")
log(f"{t2.done()}")
log(f"{t3.done()}")
log("主线程运行中...")
if __name__ == '__main__':
main()
运行
3、获取子线程的返回
- 通过result函数获取子线程的返回值
- result函数可以接收一个timeout参数,表示最大等待时间。
- 不设置,则默认一直等到子线程结束,获取返回值。这是阻塞的!
- 设置一个值,则表示最多等timeout秒,
- 如果还没到timeout秒,子线程就结束了,则获取到子线程返回值
- 如果超过了timeout秒,子线程还没结束,则主线程抛出TimeoutError异常,但子线程依旧会执行,直到返回
import threading
import time
from concurrent.futures import ThreadPoolExecutor
def log(msg):
t = threading.currentThread()
name = t.name
ident = t.ident
print(f"[{ident}][{name}]{msg}") # 打印线程号和线程名称
def job(name, second):
log(f"I am {name} begin")
time.sleep(second)
log(f"I am {name} end")
return f'{name}--->{second}'
def main():
executor = ThreadPoolExecutor(max_workers=5, thread_name_prefix="MyThread")
t1 = executor.submit(job, "墨玉麒麟", 3)
t2 = executor.submit(job, "张良", 4)
t3 = executor.submit(job, "猴子", 5)
log("主线程运行中.")
time.sleep(7)
log("主线程运行中..")
log(f"{t1.result()}")
log(f"{t2.result()}")
log(f"{t3.result()}")
log("主线程运行中...")
def main2():
executor = ThreadPoolExecutor(max_workers=5, thread_name_prefix="MyThread")
t1 = executor.submit(job, "墨玉麒麟", 3)
t2 = executor.submit(job, "张良", 4)
t3 = executor.submit(job, "猴子", 10)
log("主线程运行中.")
log("主线程运行中..")
log(f"{t1.result()}")
log(f"{t2.result()}")
log(f"{t3.result(timeout=3)}")
log("主线程运行中...")
if __name__ == '__main__':
# main()
main2()
4、等待部分或所有子线程结束
有三种方式可以等待部分或所有子线程结束
4.1、通过wait函数等待
- 通过wait函数等待所有子线程结束
- wait函数可以接收一个timeout参数,表示最大等待时间。
- 不设置,则默认一直等到所有子线程结束。这是阻塞的!
- 设置一个值,则表示最多等timeout秒,
- 如果还没到timeout秒,子线程就结束了,则继续执行主线程
- 如果超过了timeout秒,子线程还没结束,也继续执行主线程
import threading
import time
from concurrent.futures import ThreadPoolExecutor, wait
def log(msg):
t = threading.currentThread()
name = t.name
ident = t.ident
print(f"[{ident}][{name}]{msg}") # 打印线程号和线程名称
def job(name, second):
log(f"I am {name} begin")
time.sleep(second)
log(f"I am {name} end")
return f'{name}--->{second}'
def main():
executor = ThreadPoolExecutor(max_workers=5, thread_name_prefix="MyThread")
t1 = executor.submit(job, "墨玉麒麟", 3)
t2 = executor.submit(job, "张良", 4)
t3 = executor.submit(job, "猴子", 5)
wait([t1, t2, t3])
log(f"{t1.result()}")
log(f"{t2.result()}")
log(f"{t3.result()}")
log("主线程运行中.")
log("主线程运行中..")
log("主线程运行中...")
def main2():
executor = ThreadPoolExecutor(max_workers=5, thread_name_prefix="MyThread")
t1 = executor.submit(job, "墨玉麒麟", 3)
t2 = executor.submit(job, "张良", 5)
t3 = executor.submit(job, "猴子", 6)
wait([t1, t2, t3], timeout=4)
log(f"{t1.done()}")
log(f"{t2.done()}")
log(f"{t3.done()}")
log("主线程运行中.")
log("主线程运行中..")
log("主线程运行中...")
if __name__ == '__main__':
# main()
main2()
4.2、通过as_completed函数等待
- 通过as_completed函数等待所有子线程结束
- as_completed函数可以接收一个timeout参数,表示最大等待时间。
- 不设置,则默认一直等到所有子线程结束,获取返回值。这是阻塞的!
- 设置一个值,则表示最多等timeout秒,
- 如果还没到timeout秒,子线程就结束了,则获取到子线程返回值
- 如果超过了timeout秒,子线程还没结束,则主线程抛出TimeoutError异常,但子线程依旧会执行,直到返回
- 不同于wait函数,as_completed函数直接返回的是子线程的返回值
import threading
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
def log(msg):
t = threading.currentThread()
name = t.name
ident = t.ident
print(f"[{ident}][{name}]{msg}") # 打印线程号和线程名称
def job(name, second):
log(f"I am {name} begin")
time.sleep(second)
log(f"I am {name} end")
return f'{name}--->{second}'
def main():
executor = ThreadPoolExecutor(max_workers=5, thread_name_prefix="MyThread")
t1 = executor.submit(job, "墨玉麒麟", 3)
t2 = executor.submit(job, "张良", 5)
t3 = executor.submit(job, "猴子", 4)
for obj in as_completed([t1, t2, t3]):
print(obj.result())
log("主线程运行中.")
log("主线程运行中..")
log("主线程运行中...")
def main2():
executor = ThreadPoolExecutor(max_workers=5, thread_name_prefix="MyThread")
t1 = executor.submit(job, "墨玉麒麟", 4)
t2 = executor.submit(job, "张良", 6)
t3 = executor.submit(job, "猴子", 5)
for obj in as_completed([t1, t2, t3], timeout=5):
print(obj.result())
log("主线程运行中.")
log("主线程运行中..")
log("主线程运行中...")
if __name__ == '__main__':
main2()
4.3、通过map函数等待
- 通过map函数等待所有子线程结束
- map函数可以接收一个timeout参数,表示最大等待时间。
- 不设置,则默认一直等到所有子线程结束,获取返回值。这是阻塞的!
- 设置一个值,则表示最多等timeout秒,
- 如果还没到timeout秒,子线程就结束了,则获取到子线程返回值
- 如果超过了timeout秒,子线程还没结束,则主线程抛出TimeoutError异常,但子线程依旧会执行,直到返回
- 不同于as_completed函数,map函数获取的返回值是顺序的
import threading
import time
from concurrent.futures import ThreadPoolExecutor
def log(msg):
t = threading.currentThread()
name = t.name
ident = t.ident
print(f"[{ident}][{name}]{msg}") # 打印线程号和线程名称
def job(name, second):
log(f"I am {name} begin")
time.sleep(second)
log(f"I am {name} end")
return f'{name}--->{second}'
def main():
executor = ThreadPoolExecutor(max_workers=5, thread_name_prefix="MyThread")
for result in executor.map(job, ("墨玉麒麟", "张良", "猴子"), (3, 5, 4)):
print(result)
log("主线程运行中.")
log("主线程运行中..")
log("主线程运行中...")
def main2():
executor = ThreadPoolExecutor(max_workers=5, thread_name_prefix="MyThread")
for result in executor.map(job, ("墨玉麒麟", "张良", "猴子"), (4, 7, 5), timeout=3):
print(result)
log("主线程运行中.")
log("主线程运行中..")
log("主线程运行中...")
if __name__ == '__main__':
main2()
4.4、等待子线程结束函数对比
- 不论设置不设置timeout参数,wait函数都不会抛出异常。要获取返回值,需要调用result方法
- as_completed函数,如果设置了timeout参数,根据运行情况,会抛出异常。直接返回的是子线程的返回值,无需调用result方法,但返回值的顺序是不固定的,哪个线程先执行完,则先返回哪个线程的返回值
- map函数,如果设置了timeout参数,根据运行情况,会抛出异常。直接返回的是子线程的返回值,无需调用result方法,且返回值的顺序是固定的,不论哪个线程执行完毕,都根据顺序返回结果