写在之前

 

我们都知道 Python 中内置了许多标准的数据结构,比如列表,元组,字典等。与此同时标准库还提供了一些额外的数据结构,我们可以基于它们创建所需的新数据结构。

 

Python 附带了一个「容器」模块 collections,它包含了很多的容器数据类型,今天我们来讨论其中几个常用的容器数据类型,掌握了这几个可以减少我们重复造轮子所带来的烦扰。

 

namedtuple

 

相信你已经熟悉了元组,如果不熟悉请看这篇(零基础学习 Python 之元组)。一个元组相当于一个不可变的列表,你可以存储一个数据的序列。这里要说的 namedtuple(命名元组)和元组非常像,它们都不能修改自己的数据。说完了像,那么它们有哪些地方不像呢?

 

作为元组,为了获取其中的数据,我们需要使用整数作为索引:

 

 

>>> people = ('Rocky', 'python')
>>> print(people[0])
Rocky

 

 

 而 namedtuple 把元组变成了一个针对简单任务的容器,我们不必使用整数索引来访问 namedtuple 的数据,反而可以像用字典一样访问 namedtuple。

 

 

>>> from collections import namedtuple
>>> people = namedtuple('people', 'name age like')
>>> Rocky = people(name = 'rocky', age = 23, like = 'python')
>>> print(Rocky)
people(name='rocky', age=23, like='python')
>>> print(Rocky.name)
rocky

 

 

一个 namedtuple 有两个必须的参数:元组名称和字段名称。在上面的代码中,我们的元组名称是 people,字段名称是 name,age,like。nametuple 让元组变的更加易读,很容易理解代码是做什么的,同样我们也不用使用整数索引来访问一个命名元组(上面代码我们用 name 访问了 namedtuple 中的数据),这让我们的代码更加容易维护。

 

但是你一定要记住的是,虽然它的用法很爽,但它还是一个元组!所以属性值在 namedtuple 中是不可变的。

 

我们在上面说过可以像用字典一样访问 namedtuple,那么当然也可以把它转为字典,具体操作如下所示:

 

 

>>> from collections import namedtuple
>>> people = namedtuple('people', 'name age like')
>>> Rocky = people(name = 'rocky', age = 23, like = 'python')
>>> print(Rocky._asdict())
OrderedDict([('name', 'rocky'), ('age', 23), ('like', 'python')])

 

 

defaultdict

 

我之前在使用字典的时候相当随意,只是随便 dict 一下就好了,然而这样使用存在一个问题:当使用的 key 不存在的时候会报 KeyError,而 defaultdict 就比较厉害了,我们完全不需要检查 key 是否存在,所以我们能像下面这样做的随心所欲:

 

 

from collections import defaultdict

languages = (
   ('rocky', 'python'),
   ('snow', 'c'),
   ('leey', 'java'),
   ('rocky', 'c++'),
   ('leey', 'c#')
)

favourite = defaultdict(list)

for name, language in languages:
   favourite[name].append(language)

print(favourite)

 

 

输出如下所示:

 

 


defaultdict(<type 'list'>, {'leey': ['java', 'c#'], 'rocky': ['python', 'c++'], 'snow': ['c']})


 

 

然后我们再回到“键不存在,会触发 KeyError 异常”这个问题上来,我们先来看 dict 触发 KeyError 的例子:

 

 

my_dict = {}
my_dict['name']['like'] = 'python'

 

 

输出如下:

 

 


KeyError: 'name'


 

 

defaultdict 则用了一个非常巧妙的方式绕过了这个问题,请看下面的操作:

 

 

import collections
language = lambda : collections.defaultdict(language)
my_dict = language()
my_dict['name']['like'] = 'python'

 

 

运行一下显示正常,我们可以用 json.dumps 打印出 my_dict 的内容:

 

 

import json
print(json.dumps(my_dict))

 

 

运行结果如下:

 

 

{"name": {"like": "python"}}

 

Counter

 

Counter 是一个计数器,它可以帮助我们针对某项数据进行计数,比如可以用它来统计每个人擅长的编程语言:

 

 

from collections import Counter

languages = (
   ('rocky', 'python'),
   ('snow', 'c'),
   ('leey', 'java'),
   ('rocky', 'c++'),
   ('leey', 'c#')
)

cnt = Counter(name for name, language in languages)
print(cnt)

 

 

运行结果如下所示:

 

 


Counter({'leey': 2, 'rocky': 2, 'snow': 1})


 

 

当然我们也可以用它来统计一个文件,比如:

 

 

from collections import Counter

with open('test.txt', 'rb') as f:
   line_cnt = Counter(f)

print(line_cnt)

 

 

deque

 

deque 提供了一个双端队列,我们可以在首尾两端添加或者删除元素,在前面的文章中(Python 标准库之双端队列)写过,没看过的可以看看。

 

想要使用 deque,首先我们要从 collections 中导入 deque 模块,然后创建一个 deque 对象,它的用法就像我们前面学过的 list 一样,并且提供了类似的方法,具体如下所示:

 

 

from collections import deque

deq = deque()
deq.append(1)
deq.append(2)
deq.append(3)
print(deq)
print(len(deq))
print(deq[0])
print(deq[-1])

 

 

输出结果如下:

 

 

deque([1, 2, 3])
3
1
3

 

 

我们可以从两端取出数据:

 

 

from collections import deque

deq = deque(range(5))
print('len(deq) == {}'.format(len(deq)))
deq.popleft()
deq.pop()
print(deq)

 

 

输出的结果如下所示:

 

 

len(deq) == 5
deq == deque([1, 2, 3])

 

 

我们也可以对这个列表的大小进行限制,当超出我们的限制的时候,数据会从另一端被 pop 出去,具体我们来看下面的操作:

 

 

from collections import deque

deq = deque(maxlen=3)
deq.append(1)
deq.append(2)
deq.append(3)
print(deq)
deq.append(4)
print (deq)

 

 

输出的结果如下:

 

 

deque([1, 2, 3], maxlen=3)
deque([2, 3, 4], maxlen=3)

 

 

当超出 maxlen 的值时,最左边的数据将从队列中删除。

 

当然我们还可以从任意一端扩展这个双端队列中的数据:

 

 

from collections import deque

deq = deque([1,2,3])
deq.extendleft([0])
deq.extend([4,5,6])
print(deq)

 

输出的结果如下所示:


deque([0, 1, 2, 3, 4, 5, 6])