Structured Streaming消费Kafka时并不会将Offset提交到Kafka集群。但可以通过以下3种方式间接实现对Kafka Topic Lag的监控。
方式一: Checkpoint
先看下Checkpoint
目录的结构:
checkpoint/
├── commits
│ ├── 0
│ ├── 1
│ ├── 2
│ └── 3
├── metadata
├── offsets
│ ├── 0
│ ├── 1
│ ├── 2
│ └── 3
└── sources
├── 0
│ └── 0
└── 1
└── 0
-
metadata文件
: 记录了Query ID。Query从Checkpoint恢复后,此id不变。内容示例:
{"id":"b33d6d50-fb5e-4569-a3ba-7a1ca5884f14"}
-
soures目录
: 记录了每一个Source初始化时的一些信息。假设是Kafka Source,这里记录了该Source初始化时的topic、partition、offset。目录结构:checkpoint/sources/$sourceID/$batchID
。内容示例:
// 第一个Source
cat checkpoint/sources/0/0
v1
{"topic_1":{"2":17599,"1":17602,"0":17554},"test_2":{"0":453972}}
// 第二个Source
cat checkpoint/sources/1/0
v1
{"test_3":{"2":34,"1":32,"0":31}}
-
offsets目录
: 以batchID为文件名,记录了每个Batch相关的信息。如当前batch处理的offset; 水印配置等。目录结构:checkpoint/offsets/$batchID
。内容示例:
// 第二个batch
cat checkpoint/offsets/2
v1
{"batchWatermarkMs":0,"batchTimestampMs":1585488752000,"conf":{"spark.sql.streaming.stateStore.providerClass":"org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider","spark.sql.streaming.flatMapGroupsWithState.stateFormatVersion":"2","spark.sql.streaming.multipleWatermarkPolicy":"min","spark.sql.streaming.aggregation.stateFormatVersion":"2","spark.sql.shuffle.partitions":"200"}}
{"topic_1":{"2":17600,"1":17602,"0":17555},"test_2":{"0":453972}}
{"test_3":{"2":34,"1":32,"0":31}}
// 第三个batch
cat checkpoint/offsets/3
v1
{"batchWatermarkMs":0,"batchTimestampMs":1585488757000,"conf":{"spark.sql.streaming.stateStore.providerClass":"org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider","spark.sql.streaming.flatMapGroupsWithState.stateFormatVersion":"2","spark.sql.streaming.multipleWatermarkPolicy":"min","spark.sql.streaming.aggregation.stateFormatVersion":"2","spark.sql.shuffle.partitions":"200"}}
{"topic_1":{"2":17600,"1":17602,"0":17555},"test_2":{"0":453973}}
{"test_3":{"2":34,"1":32,"0":32}}
commits目录
: 记录已成功完成的batch,每完成一个batch,则创建一个以batchID为文件名的文件。目录结构:checkpoint/commits/$batchID
。一个batch开始时,会在checkpoint/offsets
目录中记录一个batchID
文件,当这个batch完成后,会在checkpoint/commits
目录中再记录一个batchID
文件,表明这个batch已正常处理。state
目录: 记录状态。当有状态操作时,如累加聚合、去重、最大最小等场景,这个目录会被用来记录这些状态数据。目录结构:checkpoint/state/xxx.delta
、checkpoint/state/xxx.snapshot
。新的.snapshot
是老的.snapshot
和.delta
合并生成的文件。Structured Streaming会根据配置周期性地生成.snapshot
文件用于记录状态。
从Kafka消费数据,当开启Checkpoint后,Structured Streaming会将消费进度记录到Checkpoint目录中。因此,结合commits目录
和offsets目录
可实现对Kafka消费进度的监控。
- 从
commits
中获取最新已完成的batchID
。 - 根据
batchID
从offsets
查询这个batch消费的offset。再获取Topic最新的Offset,即可实现对Lag的监控。
注意:
- 每一个Kafka Source,在初始化时,都会生成一个唯一的groupId(参考
KafkaSourceProvider#createSource
方法,val uniqueGroupId = s"spark-kafka-source-${UUID.randomUUID}-${metadataPath.hashCode}"
),供内部使用。该groupId在Query运行周期内不变,从Checkpoint恢复后会变化。 - 即使用各种方式,将offset提交到了如Kafka集群,从Checkpoint恢复时,默认使用的是Checkpoint里的Offset。
- 从Checkpoint恢复后,batchID编号会接着之前的增加。Checkpoint中保存最近100个已成功的batch状态。
方式二: StreamingQuery
API
在Structured Streaming中,可以通过StreamingQuery
API来管理和监控工作流。简单示例如下:
val query: StreamingQuery =resultTable
.writeStream
.format("console")
.option("truncate","false")
.outputMode("append")
.trigger(Trigger.ProcessingTime("2 seconds"))
.queryName("WordCount")
.option("checkpointLocation", "/Users/wangpei/data/apps/word_count/checkpoint")
.start()
while (true){
println("Query Name: "+query.name)
println("Query ID: "+query.id)
println("Query RunID: "+query.runId)
println("Query IsActive: "+query.isActive)
println("Query Status: "+query.status)
println("Query LastProgress: "+query.lastProgress)
Thread.sleep(10 * 1000)
}
StreamingQuery API含义:
API | 含义 | 备注 |
query | StreamingQuery实例 | 一个 |
query.name | Query的名称 | 可通过如 |
query.id | Query的唯一ID | Query从Checkpoint恢复后,此id不变 |
query.runId | Query运行时的唯一ID | Query从Checkpoint恢复后,runId会变。但运行后,在Query运行周期内, 此id不变 |
query.isActive | Query当前是否活跃 | |
query.status | Query当前状态 | 如当前Query正在做什么事情、是否有新数据要处理、触发器在激活中还是在等待下次被激活 |
query.explain | 打印出Query物理执行计划 | |
query.exception | 如果查询被异常终止,则返回异常信息 | |
query.stop | 停止正在运行的Query | |
query.awaitTermination | 阻塞主线程 | 当调用stop方法时停止或遇到异常时停止 |
query.recentProgress | 以数组的形式返回最近几次查询的进度 | Query最近几次查询进度的数量由 |
query.lastProgress | 最近一次查询的进度 |
借助StreamingQuery API,可从lastProgress
中获取最近一次查询的进度,进度中包含了最近一次消费Kafka的Offset,将此Offset提交到kafka集群,然后通过监控平台即可实现监控。
方式三: StreamingQueryListener
StreamingQueryListener
,即监听StreamingQuery
各种事件的接口,如下:
abstract class StreamingQueryListener {
import StreamingQueryListener._
// 查询开始时调用
def onQueryStarted(event: QueryStartedEvent): Unit
// 查询过程中状态发生更新时调用
def onQueryProgress(event: QueryProgressEvent): Unit
// 查询结束时调用
def onQueryTerminated(event: QueryTerminatedEvent): Unit
}
在QueryProgressEvent中,我们是可以拿到每个Source消费的Offset的。因此,基于StreamingQueryListener
,可以将消费的offset的提交到kafka集群,进而实现对Kafka Lag的监控。
基于StreamingQueryListener向Kafka提交Offset
监控Kafka Lag的关键是能够向Kafka集群提交消费的Offset,以下示例演示了如何通过StreamingQueryListener
向Kafka提交Offset。
KafkaOffsetCommiter
package com.bigdata.structured.streaming.monitor
import java.util
import java.util.Properties
import com.fasterxml.jackson.databind.{DeserializationFeature, ObjectMapper}
import com.fasterxml.jackson.module.scala.DefaultScalaModule
import org.apache.kafka.clients.consumer.OffsetAndMetadata
import org.apache.kafka.common.TopicPartition
import org.apache.kafka.clients.consumer.{ConsumerConfig, KafkaConsumer}
import org.apache.spark.sql.streaming.StreamingQueryListener
import org.apache.spark.sql.streaming.StreamingQueryListener._
import org.slf4j.LoggerFactory
/**
* Author: Wang Pei
* Summary:
* 向Kafka集群提交Offset的Listener
*/
class KafkaOffsetCommiter(brokers: String, group: String) extends StreamingQueryListener {
val logger = LoggerFactory.getLogger(this.getClass)
// Kafka配置
val properties= new Properties()
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers)
properties.put(ConsumerConfig.GROUP_ID_CONFIG, group)
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer")
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer")
val kafkaConsumer = new KafkaConsumer[String, String](properties)
def onQueryStarted(event: QueryStartedEvent): Unit = {}
def onQueryTerminated(event: QueryTerminatedEvent): Unit = {}
// 提交Offset
def onQueryProgress(event: QueryProgressEvent): Unit = {
// 遍历所有Source
event.progress.sources.foreach(source=>{
val objectMapper = new ObjectMapper()
.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false)
.configure(DeserializationFeature.USE_LONG_FOR_INTS, true)
.registerModule(DefaultScalaModule)
val endOffset = objectMapper.readValue(source.endOffset,classOf[Map[String, Map[String, Long]]])
// 遍历Source中的每个Topic
for((topic,topicEndOffset) <- endOffset){
val topicPartitionsOffset = new util.HashMap[TopicPartition, OffsetAndMetadata]()
//遍历Topic中的每个Partition
for ((partition,offset) <- topicEndOffset) {
val topicPartition = new TopicPartition(topic, partition.toInt)
val offsetAndMetadata = new OffsetAndMetadata(offset)
topicPartitionsOffset.put(topicPartition,offsetAndMetadata)
}
logger.warn(s"提交偏移量... Topic: $topic Group: $group Offset: $topicEndOffset")
kafkaConsumer.commitSync(topicPartitionsOffset)
}
})
}
}
Structured Streaming App
package com.bigdata.structured.streaming.monitor
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.streaming.{StreamingQuery, Trigger}
/**
* Author: Wang Pei
* Summary:
* 读取Kafka数据
*/
object ReadKafkaApp {
def main(args: Array[String]): Unit = {
val kafkaBrokers="kafka01:9092,kafka02:9092,kafka03:9092"
val kafkaGroup="read_kafka_c2"
val kafkaTopics1="topic_1,test_2"
val kafkaTopics2="test_3"
val checkpointDir="/Users/wangpei/data/apps/read_kafka/checkpoint/"
val queryName="read_kafka"
val spark = SparkSession.builder().master("local[3]").appName(this.getClass.getSimpleName.replace("$","")).getOrCreate()
import spark.implicits._
// 添加监听器
val kafkaOffsetCommiter = new KafkaOffsetCommiter(kafkaBrokers,kafkaGroup)
spark.streams.addListener(kafkaOffsetCommiter)
// Kafka数据源1
val inputTable1=spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers",kafkaBrokers )
.option("subscribe",kafkaTopics1)
.load()
.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
.select($"value")
// Kafka数据源2
val inputTable2=spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers",kafkaBrokers )
.option("subscribe",kafkaTopics2)
.load()
.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
.select($"value")
// 结果表
val resultTable = inputTable1.union(inputTable2)
// 启动Query
val query: StreamingQuery =resultTable
.writeStream
.format("console")
.option("truncate","false")
.outputMode("append")
.trigger(Trigger.ProcessingTime("2 seconds"))
.queryName(queryName)
.option("checkpointLocation", checkpointDir)
.start()
spark.streams.awaitAnyTermination()
}
}
查看Kafka Offset
kafka是1.10版本的, 可通过以下命令查看Topic消费者组对应的Offset。
bin/kafka-consumer-offset-checker.sh --zookeeper kafka01:2181 --topic test_3 --group read_kafka_c2
Group Topic Pid Offset logSize Lag Owner
read_kafka_c2 test_3 0 32 32 0 none
read_kafka_c2 test_3 1 32 32 0 none
read_kafka_c2 test_3 2 34 34 0 none
同理,可查看另外两个Topic对应的Group的Offset。