作者:俊达

说明

在clickhouse中,如果我们想实现数据多副本存储,以提高数据可用率和查询性能,可以使用复制表。支持数据复制的表引擎包括:

  • ReplicatedMergeTree
  • ReplicatedSummingMergeTree
  • ReplicatedReplacingMergeTree
  • ReplicatedAggregatingMergeTree
  • ReplicatedCollapsingMergeTree
  • ReplicatedVersionedCollapsingMergeTree
  • ReplicatedGraphiteMergeTree

使用复制表的前置条件是clickhouse配置了zookeeper。需要在配置文件中配置,如:

<zookeeper>
    <node>
        <host>example1</host>
        <port>2181</port>
    </node>
    <node>
        <host>example2</host>
        <port>2181</port>
    </node>
    <node>
        <host>example3</host>
        <port>2181</port>
    </node>
</zookeeper>

在clickhouse中,以表为单位进行复制。不同的表可以配置不同的复制策略。

需要注意的是,clickhouse不会复制CREATE, DROP, ATTACH, DETACH和RENAME这些操作。

而通过alter table给表增加字段的操作会进行复制。

创建复制表

建表语法:

CREATE TABLE table_name ( ... ) 
ENGINE = ReplicatedMergeTree('path_in_zookeeper', 'replica_name') 
...

创建复制表需要指定两个关键参数:

  • path_in_zookeeper: zookeeper中的路径,同一个表的多个副本,该参数必须一样。
  • replica_name: 多个副本需要配置不同的replica_name。

一般在建表时,我们会使用{shard}, {replica}等宏变量:

create table rep_table(id int, val String)
engine ReplicatedMergeTree(
    '/clickhouse/tables/{shard_id}/rep/rep_table', 
    '{replica}'
) order by id;

上面例子中,{shard_id}, {replica}都是在macros中定义的宏,我们以在系统表system.macros中查看当前实例的宏定义。

## 节点ck01
ck01 :) select * from system.macros;

SELECT *
FROM system.macros

Query id: a85a2f99-e2dd-4ba4-9b5e-519e7b5c9f40

┌─macro────┬─substitution───┐
│ cluster  │ cluster-zero   │
│ replica  │ 172.16.121.248 │
│ shard_id │ 01             │
└──────────┴────────────────┘

4 rows in set. Elapsed: 0.001 sec.


## 节点ck02
ck02 :) select * from system.macros;

SELECT *
FROM system.macros

Query id: a11a1a07-0757-414a-954a-dd716d0cda3d

┌─macro────┬─substitution──┐
│ cluster  │ cluster-zero  │
│ replica  │ 172.16.121.48 │
│ shard_id │ 01            │
└──────────┴───────────────┘

4 rows in set. Elapsed: 0.002 sec.

有几点需要注意:

1、如果replica, shard_id等宏定义在建表之后发生了变化,则可能会导致相关的表出现异常。

## ck01中将shard_id定义修改为02, 重启clickhouse后,再写入数据

ck01 :) insert into rep_table values(2, 'two', 'xx');

INSERT INTO rep_table FORMAT Values

Query id: 882aa305-a7a7-48d4-b27e-d9564c046693


0 rows in set. Elapsed: 0.004 sec.

Received exception from server (version 22.6.3):
Code: 242. DB::Exception: Received from localhost:9000. 
DB::Exception: Table is in readonly mode (replica path: /clickhouse/tables/02/rep/rep_table/replicas/172.16.121.248). (TABLE_IS_READ_ONLY)

由于在zookeeper中并不存在/clickhouse/tables/02/rep/rep_table这个路径,数据无法写入。在clickhouse的启动日志中,可以看到相关的信息:

2022.12.20 03:42:42.505570 [ 177009 ] {} <Warning> rep.rep_table (01b4ad06-4d45-4451-808b-8403e8b1b6c8):
 No metadata in ZooKeeper for /clickhouse/tables/02/rep/rep_table: table will be in readonly mode.

2、复制表的多个副本表结构必须一致
如果建表时表结构不一致,则无法创建表:

ck01 :) create table rep_table(id int, val String, id2 int)
        engine ReplicatedMergeTree('/clickhouse/tables/{shard_id}/rep/rep_table', '{replica}')
        order by id;

CREATE TABLE rep_table
(
    `id` int,
    `val` String,
    `id2` int
)
ENGINE = ReplicatedMergeTree('/clickhouse/tables/{shard_id}/rep/rep_table', '{replica}')
ORDER BY id

Query id: 8aa10add-590a-4129-9420-a625edd9d5e1


0 rows in set. Elapsed: 0.240 sec.

Received exception from server (version 22.6.3):
Code: 122. DB::Exception: Received from localhost:9000. DB::Exception: Table columns structure in ZooKeeper is different from local table structure. Local columns:
columns format version: 1
3 columns:
`id` Int32
`val` String
`id2` Int32

Zookeeper columns:
columns format version: 1
2 columns:
`id` Int32
`val` String
. (INCOMPATIBLE_COLUMNS)

3、多个副本的replica需要唯一
如果建表时,在zookeeper中已经存在对应replica的路径,则无法创建成功:

ck02 :) create table rep_table2(id int, val String)
                engine ReplicatedMergeTree('/clickhouse/tables/{shard_id}/rep/rep_table', '{replica}')
                order by id
                ;

CREATE TABLE rep_table2
(
    `id` int,
    `val` String
)
ENGINE = ReplicatedMergeTree('/clickhouse/tables/{shard_id}/rep/rep_table', '{replica}')
ORDER BY id

Query id: 6231b6f8-3421-4c5f-90b4-d13e1cdb6463


0 rows in set. Elapsed: 0.750 sec.

Received exception from server (version 22.6.3):
Code: 253. DB::Exception: Received from localhost:9000. DB::Exception: 
Replica /clickhouse/tables/01/rep/rep_table/replicas/172.16.121.48 already exists. (REPLICA_IS_ALREADY_EXIST)

复制表在zookeeper中存了哪些信息

zookeeper在clickhouse的数据复制中起着关键作用。

如何使用curl 将clickhouse数据源导入grafana_sed

如上图所示,对复制表的操作,会在zookeeper中记录日志信息,副本通过记录在zookeeper中的信息,实现数据复制。

如下操作都会在zookeeper中记录日志:

  • insert
  • merge(optimize table)
  • alter table attach/detach partition/part
  • alter table update/delete
  • alter table add column

复制表zookeeper节点内容

通过zookeeper客户端,或者使用系统表system.zookeeper,都可以查看复制表zookeeper对应节点中存储了哪些信息

ck01 :) select name  from system.zookeeper where path='/clickhouse/tables/01/rep/rep_table';

SELECT name
FROM system.zookeeper
WHERE path = '/clickhouse/tables/01/rep/rep_table'

Query id: 59cb84f5-87ad-4ec4-8fd6-974dbce358a1

┌─name───────────────────────┐
│ alter_partition_version    │
│ metadata                   │
│ temp                       │
│ table_shared_id            │
│ log                        │
│ leader_election            │
│ columns                    │
│ blocks                     │
│ nonincrement_block_numbers │
│ replicas                   │
│ quorum                     │
│ pinned_part_uuids          │
│ block_numbers              │
│ mutations                  │
│ zero_copy_s3               │
│ zero_copy_hdfs             │
│ part_moves_shard           │

metadata:表结构信息

log: 数据复制关键信息。log节点下,每一条日志都对应着对表的一个动作。

replicas:每一个副本会在replicas下有一个节点。

mutations:对表的mutation操作(如alter table update/delete)

log节点信息

ck02 :) select name, value  from system.zookeeper where path='/clickhouse/tables/01/rep/rep_table/log' order by name\G

SELECT
    name,
    value
FROM system.zookeeper
WHERE path = '/clickhouse/tables/01/rep/rep_table/log'
ORDER BY name ASC

Query id: 82f00616-9c18-4bc6-a107-189ac4a67aa1


-- 对应一个mutation操作的日志
Row 2:
──────
name:  log-0000000008
value: format version: 4
create_time: 2022-12-20 06:06:11
source replica: 172.16.121.248
block_id:
mutate
all_1_1_0_2
to
all_1_1_0_3


-- merge 操作的日志
Row 3:
──────
name:  log-0000000009
value: format version: 4
create_time: 2022-12-20 06:06:20
source replica: 172.16.121.248
block_id:
merge
all_0_0_0_3
all_1_1_0_3
into
all_0_1_1_3
deduplicate: 0
part_type: Compact

-- alter table的日志
Row 8:
──────
name:  log-0000000014
value: format version: 4
create_time: 2022-12-20 06:08:14
source replica: 172.16.121.248
block_id:
alter
alter_version
6
have_mutation
1
columns_str_size:
61
columns format version: 1
2 columns:
`id` Int32
`val` String

metadata_str_size:
192
metadata format version: 1
date column:
sampling expression:
index granularity: 8192
mode: 0
sign column:
primary key: id
data format version: 1
partition key:
granularity bytes: 10485760

-- alter table attach partition的日志
Row 10:
───────
name:  log-0000000016
value: format version: 4
create_time: 2022-12-20 06:11:59
source replica: 172.16.121.248
block_id:
REPLACE_RANGE
drop_range_name: all_0_0_0
from_database: rep
from_table: tmp_rep
source_parts: ['all_1_1_0']
new_parts: ['all_8_8_0']
part_checksums: ['5381E04F17BD6299E7C1F56B445FB8DB']
columns_version: -1

-- insert操作对应的日志
Row 11:
───────
name:  log-0000000017
value: format version: 4
create_time: 2022-12-20 06:17:38
source replica: 172.16.121.248
block_id: all_1659522035524593032_2034088950575960742
get
all_9_9_0
part_type: Compact

mutation节点信息

ck02 :) select name, value  from system.zookeeper where path='/clickhouse/tables/01/rep/rep_table/mutations'\G

SELECT
    name,
    value
FROM system.zookeeper
WHERE path = '/clickhouse/tables/01/rep/rep_table/mutations'

Query id: 2cea07ee-0b0b-4a6d-85f0-f73fcb129f06

Row 1:
──────
name:  0000000001
value: format version: 1
create time: 2022-12-20 06:06:11
source replica: 172.16.121.248
block numbers count: 1
all	3
commands: DELETE WHERE id = 1
alter version: -1

Row 2:
──────
name:  0000000000
value: format version: 1
create time: 2022-12-20 06:05:40
source replica: 172.16.121.248
block numbers count: 1
all	2
commands: UPDATE val = \'updated\' WHERE 1
alter version: -1

Row 3:
──────
name:  0000000003
value: format version: 1
create time: 2022-12-20 06:08:01
source replica: 172.16.121.248
block numbers count: 1
all	5
commands: DROP COLUMN padding2
alter version: 5

replicas节点

每一个副本都会在replicas路径下建立一个节点。

ck02 :) select name  from system.zookeeper where path='/clickhouse/tables/01/rep/rep_table/replicas/172.16.121.48' ;

SELECT name
FROM system.zookeeper
WHERE path = '/clickhouse/tables/01/rep/rep_table/replicas/172.16.121.48'

Query id: 9f4dd647-39fa-42ed-a8a2-beb642673018

┌─name────────────────────────┐
│ is_lost                     │
│ metadata                    │
│ is_active                   │
│ mutation_pointer            │
│ columns                     │
│ max_processed_insert_time   │
│ flags                       │
│ log_pointer                 │
│ min_unprocessed_insert_time │
│ host                        │
│ parts                       │
│ queue                       │
│ metadata_version            │
└─────────────────────────────┘

replicas下的关键信息:

  • log_pointer: 当前副本处理的日志位点
  • queue:当前节点待处理任务队列
  • metadata_version: 元数据版本

添加新副本

给已有的表添加新副本时,新副本会选择一个原有的节点做全量数据同步。

从clickhouse的debug日志中可以看到复制的大概流程:

executeQuery: (from [::ffff:127.0.0.1]:42530) CREATE TABLE rep.rep_table ( `id` Int32, `val` String ) ENGINE = ReplicatedMergeTree('/clickhouse/tables/{shard_id}/rep/rep_table', '{replica}') ORDER BY id SETTINGS index_granularity = 8192; (stage: Complete)
rep.rep_table (b2fe260c-ca4f-4e6d-903a-6a4f0358777e): Loading data parts
rep.rep_table (b2fe260c-ca4f-4e6d-903a-6a4f0358777e): There are no data parts
rep.rep_table (b2fe260c-ca4f-4e6d-903a-6a4f0358777e): This table /clickhouse/tables/01/rep/rep_table is already created, will add new replica
rep.rep_table (b2fe260c-ca4f-4e6d-903a-6a4f0358777e): Creating replica /clickhouse/tables/01/rep/rep_table/replicas/ck03
rep.rep_table (b2fe260c-ca4f-4e6d-903a-6a4f0358777e): Became leader
rep.rep_table (ReplicatedMergeTreeRestartingThread): Activating replica.
rep.rep_table (b2fe260c-ca4f-4e6d-903a-6a4f0358777e): Replica 172.16.121.48 has log pointer '18', approximate 0 queue lag and 0 queue size
rep.rep_table (b2fe260c-ca4f-4e6d-903a-6a4f0358777e): Replica 172.16.121.248 has log pointer '18', approximate 0 queue lag and 0 queue size
rep.rep_table (b2fe260c-ca4f-4e6d-903a-6a4f0358777e): Will mimic 172.16.121.48
rep.rep_table (b2fe260c-ca4f-4e6d-903a-6a4f0358777e): Queued 3 parts to be fetched, 0 parts ignored

rep.rep_table (b2fe260c-ca4f-4e6d-903a-6a4f0358777e): Fetching part all_0_1_1_6 from /clickhouse/tables/01/rep/rep_table/replicas/172.16.121.248
rep.rep_table (b2fe260c-ca4f-4e6d-903a-6a4f0358777e): Fetching part all_9_9_0 from /clickhouse/tables/01/rep/rep_table/replicas/172.16.121.248
rep.rep_table (b2fe260c-ca4f-4e6d-903a-6a4f0358777e): Fetching part all_8_8_0 from /clickhouse/tables/01/rep/rep_table/replicas/172.16.121.248

在zookeeper中添加新的replica节点

根据其他节点的log pointer和queue信息,选择复制的源端节点

将源端节点的parts信息加入到本节点的queue中。

将part下载到本节点并attach到表中。