- 什么是DBSCAN
DBSCAN是一种基于密度的空间聚类算法,它不需要定义簇的个数,而是将具有足够高密度的区域划分为簇,并在有噪声的数据中发现任意形状的簇,在此算法中将簇定义为密度相连的点的最大集合。
算法实现过程:
1)解析样本数据文件。2)计算每个点与其他所有点之间的欧几里德距离。3)计算每个点的k-距离值,并对所有点的k-距离集合进行升序排序,输出的排序后的k-距离值。4)将所有点的k-距离值,在Excel中用散点图显示k-距离变化趋势。5)通过观察,将散点图中急剧发生变化的位置所对应的k-距离的值,确定为半径Eps的值。6)根据给定MinPts=4,以及半径Eps的值,计算所有核心点,并建立核心点与到核心点距离小于半径Eps的点的映射。7)根据得到的核心点集合,以及半径Eps的值,计算能够连通的核心点,得到噪声点。8)将能够连通的每一组核心点,以及到核心点距离小于半径Eps的点,都放到一起,形成一个簇。9)选择不同的半径Eps,使用DBSCAN算法聚类得到的一组簇及其噪声点,使用散点图对比聚类效果。
注: k-距离是点p(i)到所有点(除了p(i)点)之间距离第k近的距离。对待聚类集合中每个点p(i)都计算k-距离,最后得到所有点的k-距离集合E={e(1), e(2), …, e(n)}。
- k-means算法流程, KMeans有什么缺点,K怎么确定
- 从数据集中随机选择k个聚类样本作为初始的聚类中心,然后计算数据集中每个样本到这k个聚类中心的距离,并将此样本分到距离最小的聚类中心所对应的类中。将所有样本归类后,对于每个类别重新计算每个类别的聚类中心即每个类中所有样本的质心,重复以上操作直到聚类中心不变为止。
- k-means存在缺点:
1)k-means是局部最优的,容易受到初始质心的影响
2)同时,k值的选取也会直接影响聚类结果,最优聚类的k值应与样本数据本身的结构信息相吻合,而这种结构信息是很难去掌握,因此选取最优k值是非常困难的。 - K怎么确定
1)轮廓系数
在实际应用中,由于Kmean一般作为数据预处理,或者用于辅助分聚类贴标签。所以k一般不会设置很大。可以通过枚举,令k从2到一个固定值如10,在每个k值上重复运行数次kmeans(避免局部最优解),并计算当前k的平均轮廓系数,最后选取轮廓系数最大的值对应的k作为最终的集群数目。
- Calinski-Harabasz准则(也称为方差比准则)
- 轮廓系数(Silhouette Coefficient)
结合了聚类的凝聚度(Cohesion)和分离度(Separation),用于评估聚类的效果。该值处于-1~1之间,值越大,表示聚类效果越好。具体计算方法如下:
对于第i个元素x_i,计算x_i与其同一个簇内的所有其他元素距离的平均值,记作a_i,用于量化簇内的凝聚度。
选取x_i外的一个簇b,计算x_i与b中所有点的平均距离,遍历所有其他簇,找到最近的这个平均距离,记作b_i,用于量化簇之间分离度。
对于元素x_i,轮廓系数s_i = (b_i – a_i)/max(a_i,b_i)
计算所有x的轮廓系数,求出平均值即为当前聚类的整体轮廓系数 从上面的公式,不难发现若s_i小于0,说明x_i与其簇内元素的平均距离小于最近的其他簇,表示聚类效果不好。如果a_i趋于0,或者b_i足够大,那么s_i趋近与1,说明聚类效果比较好。 - LDA的原理
LDA是一种基于有监督学习的降维方式,将数据集在低维度的空间进行投影,要使得投影后的同类别的数据点间的距离尽可能的靠近,而不同类别间的数据点的距离尽可能的远。