银行卡识别

  • 前言
  • 一、数据预处理
  • 1.1 数据准备
  • 1.2 数据增强
  • 二、训练(CRNN)
  • 三、需要修改的内容
  • 3.1 数据增强
  • 3.2 训练
  • 四、CRNN 结构说明
  • 4.1 CNN
  • 4.2 BiLSTM
  • 4.3 CTC
  • 五、卡号检测
  • 六、BIN码校验
  • 参考链接



前言

  • 对各种银行卡进行卡号识别,CTPN 进行文字定位,CRNN 进行文字识别以及 Web 实现银行卡号码识别
  • 我们国内现在目前用的卡类标准为 ISO/IEC7810:2003 的 ID-1 标准,卡片尺寸是 85.60mm*53.98mm,通过计算长宽比可以得到为 0.623.
  • 先思考一下我们的大致思路: 因为我们最终是要完成卡面信息的识别,我们可以分为两个关键流程:文本检测文本识别

一、数据预处理

1.1 数据准备

  • bankcard_pre 每张图片大小为 120 * 46,图片命名格式为 0000a_0.png
  • 每个原始训练图片包括 4 个字符,待后来进行随机 4~6 个随机拼接形成类似银行卡号的长度。
  • 训练集与验证集的比例是 9:1

1.2 数据增强

  • 先对图像做数据增强,然后再做图像拼接。
  • 随机缩放、平移、颜色变换、模糊处理、噪声,最后进行连接,增强倍数 96 倍





代码实现:

import os
import numpy as np
from os import getcwd
import cv2
import PIL.Image
import random
import copy
import multiprocessing

PATH = 'train_img/'

def rand(a=0, b=1):
    return np.random.rand() * (b - a) + a

def rand_resize(img, img_name, count, annotation, jitter=.3):
    w, h, _ = img.shape
    new_ar = w / h * rand(1 - jitter, 1 + jitter) / rand(1 - jitter, 1 + jitter)
    scale = rand(.25, 2)
    if new_ar < 1:
        nh = int(scale * h)
        nw = int(nh * new_ar)
    else:
        nw = int(scale * w)
        nh = int(nw / new_ar)
    new_name = img_name[:6] + str(count) + '.png'
    count = count + 1
    annotation[PATH + new_name] = annotation[PATH + img_name]
    new_img = cv2.resize(img, (nh, nw), cv2.INTER_CUBIC)
    cv2.imwrite(PATH + new_name, new_img)
    return count

def place_img(img, img_name, count, annotation):
    H, W, C = img.shape
    offestH = int(rand(int(H * 0.1), int(H * 0.2)))
    offestW = int(rand(int(W * 0.015), int(W * 0.02)))
    dst = np.zeros((H, W, C), np.uint8)
    dst1 = np.zeros((H, W, C), np.uint8)
    dst2 = np.zeros((H, W, C), np.uint8)
    dst3 = np.zeros((H, W, C), np.uint8)

    for i in range(H - offestH):
        for j in range(W - offestW):
            dst[i + offestH, j + offestW] = img[i, j]
            dst1[i, j] = img[i + offestH, j + offestW]
            dst2[i + offestH, j] = img[i, j + offestW]
            dst3[i, j + offestW] = img[i + offestH, j]

    new_name = img_name[:6] + str(count) + '.png'
    count += 1
    new_name1 = img_name[:6] + str(count) + '.png'
    count += 1
    new_name2 = img_name[:6] + str(count) + '.png'
    count += 1
    new_name3 = img_name[:6] + str(count) + '.png'
    count += 1

    cv2.imwrite(PATH + new_name, dst)
    cv2.imwrite(PATH + new_name1, dst1)
    cv2.imwrite(PATH + new_name2, dst2)
    cv2.imwrite(PATH + new_name3, dst3)

    annotation[PATH + new_name] = annotation[PATH + img_name]
    annotation[PATH + new_name1] = annotation[PATH + img_name]
    annotation[PATH + new_name2] = annotation[PATH + img_name]
    annotation[PATH + new_name3] = annotation[PATH + img_name]
    return count

def colormap(img, img_name, count, annotation):
    rand_b = rand() + 1
    rand_g = rand() + 1
    rand_r = rand() + 1
    H, W, C = img.shape
    new_name = img_name[:6] + str(count) + '.png'
    count += 1
    dst = np.zeros((H, W, C), np.uint8)
    for i in range(H):
        for j in range(W):
            (b, g, r) = img[i, j]
            b = int(b * rand_b)
            g = int(g * rand_g)
            r = int(r * rand_r)
            if b > 255:
                b = 255
            if g > 255:
                g = 255
            if r > 255:
                r = 255
            dst[i][j] = (b, g, r)
    annotation[PATH + new_name] = annotation[PATH + img_name]
    cv2.imwrite(PATH + new_name, dst)
    return count

def blur(img, img_name, count, annotation):
    img_GaussianBlur = cv2.GaussianBlur(img, (5, 5), 0)
    img_Mean = cv2.blur(img, (5, 5))
    img_Median = cv2.medianBlur(img, 3)
    img_Bilater = cv2.bilateralFilter(img, 5, 100, 100)

    new_name = img_name[:6] + str(count) + '.png'
    count += 1
    new_name1 = img_name[:6] + str(count) + '.png'
    count += 1
    new_name2 = img_name[:6] + str(count) + '.png'
    count += 1
    new_name3 = img_name[:6] + str(count) + '.png'
    count += 1

    annotation[PATH + new_name] = annotation[PATH + img_name]
    annotation[PATH + new_name1] = annotation[PATH + img_name]
    annotation[PATH + new_name2] = annotation[PATH + img_name]
    annotation[PATH + new_name3] = annotation[PATH + img_name]

    cv2.imwrite(PATH + new_name, img_GaussianBlur)
    cv2.imwrite(PATH + new_name1, img_Mean)
    cv2.imwrite(PATH + new_name2, img_Median)
    cv2.imwrite(PATH + new_name3, img_Bilater)
    return count


def noise(img, img_name, count, annotation):
    H, W, C = img.shape
    noise_img = np.zeros((H, W, C), np.uint8)

    for i in range(H):
        for j in range(W):
            noise_img[i, j] = img[i, j]

    for i in range(500):
        x = np.random.randint(H)
        y = np.random.randint(W)
        noise_img[x, y, :] = 255

    new_name = img_name[:6] + str(count) + '.png'
    count += 1
    annotation[PATH + new_name] = annotation[PATH + img_name]
    cv2.imwrite(PATH + new_name, noise_img)
    return count

def concat(img, img_name, count, annotation, img_list):
    # img = cv2.imread(PATH+img_name)
    H, W, C = img.shape
    num = int(rand(4, 6))
    imgs = random.sample(img_list, num)
    dst = np.zeros((H, W * (num + 1), C), np.uint8)
    for h in range(H):
        for w in range(W):
            dst[h, w] = img[h, w]

    new_name = img_name[:6] + str(count) + '.png'
    count += 1

    boxes = copy.copy(annotation[PATH + img_name])
    for i, image_name in enumerate(imgs):
        image = cv2.imread(PATH + image_name)
        for h in range(H):
            for w in range(W):
                dst[h, W * (i + 1) + w] = image[h, w]
        for label in annotation[PATH + image_name]:
            boxes.append(label)

    cv2.imwrite(PATH + new_name, dst)
    annotation[PATH + new_name] = boxes

    count = noise(dst, new_name, count, annotation)  # 1
    count = noise(dst, new_name, count, annotation)
    for i in range(4):
        count = rand_resize(dst, new_name, count, annotation)  # 4
    count = colormap(dst, new_name, count, annotation)  # 1
    count = blur(dst, new_name, count, annotation)  # 4
    count = place_img(dst, new_name, count, annotation)  # 4
    return count

def main(img, img_name, annotation):
    count = 1
    for i in range(5):
        count = concat(img, img_name, count, annotation, img_list)  # 1
    print(img_name + "增强完成")


if __name__ == '__main__':
    trainval_percent = 0.2
    train_percent = 0.8
    img_list = os.listdir(PATH)

    manager = multiprocessing.Manager()
    annotation = manager.dict()
    for img_name in img_list:
        boxes = []
        a = np.linspace(0, 120, 5, dtype=np.int)
        for i in range(len(a) - 1):
            if img_name[i] == '_':
                continue
            boxes.append(img_name[i])
        annotation[PATH + img_name] = boxes

    ''' 多进程处理数据,windows下测试出错 '''
    pool = multiprocessing.Pool(10)
    for img_name in img_list:
        img = cv2.imread(PATH + img_name, -1)
        pool.apply_async(main, (img, img_name, annotation,))
    pool.close()
    pool.join()

    ''' 非多进程处理数据 '''
    # for img_name in img_list:
    #     img = cv2.imread(PATH + img_name,-1)
    #     main(img,img_name,annotation)

    train_file = open('train.txt', 'w')
    val_file = open('val.txt', 'w')
    val_split = 0.1
    rand_index = list(range(len(annotation)))
    random.shuffle(rand_index)
    val_index = rand_index[0: int(0.1 * len(annotation))]

    for i, names in enumerate(annotation.keys()):
        if i in val_index:
            val_file.write(names)
            for label in annotation[names]:
                val_file.write(" " + str(label))
            val_file.write('\n')
        else:
            train_file.write(names)
            for label in annotation[names]:
                train_file.write(" " + str(label))
            train_file.write('\n')

    train_file.close()
    val_file.close()

二、训练(CRNN)

  • step 1: 传入训练的图像均为 灰度化图像,并且 shape: (32,256)
  • step 2: 预测的 label 长度:img_w / 4(即每 4 个像素分隔有一个 pred,最后采用 ctc_loss 对齐)
  • step 3: 训练指令如下
cd bankcardocr/train
CUDA_VISIBLE_DEVICES=0 python run.py

三、需要修改的内容

3.1 数据增强

  • PATH 的路径
  • train_file 的路径
  • val_file 的路径

3.2 训练

  • weight_save_path 的路径
  • train_txt_path 的路径
  • val_txt_path 的路径

四、CRNN 结构说明

  • 具体实现细节可参考我另一篇博客:CRNN
  • 博客地址:

4.1 CNN

CNN: 采用 CNN(类似于 VGG 网络)进行特征提取,提取到的特征以序列方式输出。

# Map2Sequence part
x = Permute((2, 3, 1), name='permute')(conv_otput)  # 64*512*1
rnn_input = TimeDistributed(Flatten(), name='for_flatten_by_time')(x)  # 64*512

4.2 BiLSTM

BLSTM: 特征输入到 BLSTM,输出每个序列代表的值(这个值是一个序列,代表可能出现的值),对输出进行 softmax 操作,计算每个可能出现值得概率。

y = Bidirectional(LSTM(256, kernel_initializer=initializer, return_sequences=True), merge_mode='sum', name='LSTM_1')(rnn_input)  # 64*512
y = BatchNormalization(name='BN_8')(y)
y = Bidirectional(LSTM(256, kernel_initializer=initializer, return_sequences=True), name='LSTM_2')(y)  # 64*512
y_pred = Dense(num_classes, activation='softmax', name='y_pred')(y)

4.3 CTC

CTC: 相当于一个 loss,一个计算概率到实际输出的概率。

五、卡号检测

判断银行卡(储蓄卡,信用卡)的卡号的合法性用到了 Luhn 算法
算法流程如下:

  1. 从右到左给卡号字符串编号,最右边第一位是1,最右边第二位是2,最右边第三位是3….
  2. 从右向左遍历,对每一位字符t执行第三个步骤,并将每一位的计算结果相加得到一个数s。
  3. 对每一位的计算规则:如果这一位是奇数位,则返回t本身,如果是偶数位,则先将t乘以2得到一个数n,如果n是一位数(小于10),直接返回n,否则将n的个位数和十位数相加返回。
  4. 如果s能够整除10,则此号码有效,否则号码无效。

因为最终的结果会对10取余来判断是否能够整除10,所以又叫做模10算法

算法代码:

def luhn_checksum(card_number):
    def digits_of(n):
        return [int(d) for d in str(n)]
    digits = digits_of(card_number)
    odd_digits = digits[-1::-2]
    even_digits = digits[-2::-2]
    checksum = 0
    checksum += sum(odd_digits)
    for d in even_digits:
    return checksum % 10

def is_luhn_valid(card_number):
    return luhn_checksum(card_number) == 0

六、BIN码校验

银行卡号一般是13-19位组成,国内一般是 16,19 位,其中 16 位为信用卡,19 位为储蓄卡,通常情况下都是由 “卡BIN+发卡行自定位+校验位” 这三部分构成,

银行卡的前 6 位用来识别发卡银行或者发卡机构的,称为发卡行识别码,简称为卡BIN。拿出钱包里的卡,会发现如果是只带有银联标注的卡,十有八九都是以62开头的,但是也有例外。

这里边包含一个坑:你知道Bin码的规则,但是你不知道国内银行的BIN码,网上的也大都不全,只能以后慢慢人工扩充。

我这边整理了一份,但是也不全,大概包含有 1300 个 BIN 号,以后再慢慢整理

银行卡识别银行java_计算机视觉


只需要将合法的卡号前6位切片出来进行查询就好了。