考虑这样的一个问题,一个公司有这样的一个需求:
设计销售领域的订单事实表
,该事实表应该包含哪些维度和度量
?事实表和维表该分别如何去设计?
好了,我们把关键信息拿出来,首先我们要有维度
包括:销售员、销售员所属部门
、下订单的时间
;度量
:销售量
;
那么,订单事实表,其实就是一个商品销售的清单
;
依照这个思路,我们建立的第一个模型可能是以下这样的:
单单看上去,貌似是符合我们的问题的需要,而且符合数据库的范式设计:没有冗余字段;但是情况真的就是这样吗?
答案是否定的,确实对于一般的OLTP系统而言这样的表设计确实减少了冗余和,增删改查等操作也很方便,但是往往对于我们的统计系统、OLAP、数据挖掘而言,情况却并非如此,举个例子:我们要统计每个部门各自的销售量为多少?那么对于上表,sql是这样的:
select a.*,b.sid into #dep_saleser from department a,saleser_dim b on a.dep_id = b.dep_id;
select count(1),a.dep_name from #dep_saleser a,order_fact b on a.sid=b.sid group by a.dep_name;
对于这么一个简单的需求已经要写两了sql去实现了,其实数据库表模型的的设计是灵活的,我们完全可以根据我们的业务去设计我们的数据表;考虑到部门和销售员可以是同属于销售者
这个维度,只是他们是有上下级别关系的那么依照这个思路,我们的模型可以建立为下面这样:
那么统计每个部门各自的销售量,可以用如下sql去实现:
select count(1),a.dep_name from saleser_dim a,order_fact b
on a.sid=b.sid group by a.dep_name;
确实对于这个模型而言,有些情况下会出现冗余(填写用户,没有填写部门;填写部门没填写用户);但是对于提取数统计的逻辑又相对来说要简单了好多;
考虑到要实现取数简单,我们还可以想出另外一种方法:
看上去好像不错哦~~,取数据也就一句sql就搞掂了,但是却是最最槽糕的情况,有可能一个销售员,前几天登记的部门是a,但是其实他的所属于的部门为b,那么对于上面这个模型,我们得改动销售员和订单表;而对于上面的其他两个模型都仅仅需要改动一张表就行了,造成查询数据部一致往往也就是这种数据模型所造成的。
所谓的宽表就是字段比较多的表,包含的维度层次比较多,造成冗余也比较多,`毁范式设计`,
但是`利于取数统计`,而窄表往往对于OLTP比较合适,符合范式设计原则;
作者:Leo_wl