K8S官方文档

nginx更新crt_docker

注意:该集群每个master节点都默认由kubeadm生成了etcd容器,组成etcd集群。正常使用集群,etcd的集群不能超过一半为down状态。

docker的namespace:是利用宿主机内核的namespace功能实现容器的资源隔离

k8s的namespace:是基于名称实现项目容器的隔离,叫命名空间

master节点组件:

kube-apiserver:Kubernetes API server 为 api 对象验证并配置数据,包括 pods、 services、replicationcontrollers和其它 api 对象,API Server 提供 REST 操作和到集群共享状态的前端,所有其他组件通过它进行交互。

kube-scheduler:是一个拥有丰富策略、能够感知拓扑变化、支持特定负载的功能组件,它对集群的可用性、性能表现以及容量都影响巨大。scheduler需要考虑独立的和集体的资源需求、服务质量需求、硬件/软件/策略限制、亲和与反亲和规范、数据位置、内部负载接口、截止时间等等。如有必要,特定的负载需求可以通过API暴露出来。

kube-controller-manager:Controller Manager作为集群内部的管理控制中心,负责集群内的Node、Pod副本、服务端点(Endpoint)、命名空间(Namespace)、服务账号(ServiceAccount)、资源定额(ResourceQuota)的管理,当某个Node意外宕机时,Controller Manager会及时发现并执行自动化修复流程,确保集群始终处于预期的工作状态。

etcd:etcd 是CoreOS公司开发目前是Kubernetes默认使用的key-value数据存储系统,用于保存所有集群数据,支持分布式集群功能,生产环境使用时需要为etcd数据提供定期备份机制。

node节点组件:

kube-proxy:Kubernetes 网络代理运行在 node 上,它反映了 node 上 Kubernetes API 中定义的服务,并可以通过一组后端进行简单的 TCP、UDP 流转发或循环模式(round robin))的 TCP、UDP 转发,用户必须使用apiserver API 创建一个服务来配置代理,其实就是kube-proxy通过在主机上维护网络规则并执行连接转发来实现Kubernetes服务访问。

kubelet:是主要的节点代理,它会监视已分配给节点的pod,具体功能如下:
向master汇报node节点的状态信息
接受指令并在Pod中创建 docker容器
准备Pod所需的数据卷
返回pod的运行状态
在node节点执行容器健康检查

部署K8S,基本环境准备

集群说明:该集群的etcd节点默认是安装在Master节点的,也就是说,master节点不能同时挂掉两个,否则会影响整个集群的访问。

主机

ip

k8s-master01

192.168.15.201

k8s-master02

192.168.15.202

k8s-master03

192.168.15.203

ha1

192.168.15.204

ha2

192.168.15.205

harbor

192.168.15.206

k8s-node01

192.168.15.207

k8s-node02

192.168.15.208

k8s-node03

192.168.15.209

生产环境的node节点硬件配置

  • CPU:2*2640 V4
  • 内存:128G、192G
  • 硬盘:推荐固态盘,RAID10-6块

注意:服务器内存至少为2个G。

系统优化,所有主机都执行

注意:禁用swap,selinux,iptables,并优化内核参数及资源限制参数,所有主机全部执行

# 关闭防火墙
systemctl disable --now firewalld

# 关闭Selinux
setenforce 0

# 关闭swap交换分区
# 临时关闭swap分区
swapoff -a 
# 永久关闭swap分区
sed -i.bak '/swap/s/^/#/' /etc/fstab
# 修改/etc/fstab 让kubelet忽略swap分区
echo 'KUBELET_EXTRA_ARGS="--fail-swap-on=false"' > /etc/sysconfig/kubelet  

# 查看swap交换分区(确认关闭状态)
[root@k8s-master-01 ~]# free -h
              total        used        free      shared  buff/cache   available
Mem:           2.9G        205M        2.6G        9.4M        132M        2.6G
Swap:            0B          0B          0B
  • vim /etc/sysctl.conf
# Controls source route verification
net.ipv4.conf.default.rp_filter = 1
net.ipv4.ip_nonlocal_bind = 1
net.ipv4.ip_forward = 1

# Do not accept source routing
net.ipv4.conf.default.accept_source_route = 0

# Controls the System Request debugging functionality of the kernel
kernel.sysrq = 0

# Controls whether core dumps will append the PID to the core filename.
# Useful for debugging multi-threaded applications.
kernel.core_uses_pid = 1

# Controls the use of TCP syncookies
net.ipv4.tcp_syncookies = 1

# Disable netfilter on bridges.
net.bridge.bridge-nf-call-ip6tables = 0
net.bridge.bridge-nf-call-iptables = 0
net.bridge.bridge-nf-call-arptables = 0

# Controls the default maxmimum size of a mesage queue
kernel.msgmnb = 65536

# # Controls the maximum size of a message, in bytes
kernel.msgmax = 65536

# Controls the maximum shared segment size, in bytes
kernel.shmmax = 68719476736

# # Controls the maximum number of shared memory segments, in pages
kernel.shmall = 4294967296




# TCP kernel paramater
net.ipv4.tcp_mem = 786432 1048576 1572864
net.ipv4.tcp_rmem = 4096        87380   4194304
net.ipv4.tcp_wmem = 4096        16384   4194304
net.ipv4.tcp_window_scaling = 1
net.ipv4.tcp_sack = 1

# socket buffer
net.core.wmem_default = 8388608
net.core.rmem_default = 8388608
net.core.rmem_max = 16777216
net.core.wmem_max = 16777216
net.core.netdev_max_backlog = 262144
net.core.somaxconn = 20480
net.core.optmem_max = 81920


# TCP conn
net.ipv4.tcp_max_syn_backlog = 262144
net.ipv4.tcp_syn_retries = 3
net.ipv4.tcp_retries1 = 3
net.ipv4.tcp_retries2 = 15

# tcp conn reuse
net.ipv4.tcp_tw_reuse = 1
net.ipv4.tcp_tw_recycle = 0
net.ipv4.tcp_fin_timeout = 30
net.ipv4.tcp_timestamps = 0

net.ipv4.tcp_max_tw_buckets = 20000
net.ipv4.tcp_max_orphans = 3276800
net.ipv4.tcp_synack_retries = 1
net.ipv4.tcp_syncookies = 1

# keepalive conn
net.ipv4.tcp_keepalive_time = 300
net.ipv4.tcp_keepalive_intvl = 30
net.ipv4.tcp_keepalive_probes = 3
net.ipv4.ip_local_port_range = 10001    65000

# swap
vm.overcommit_memory = 0
vm.swappiness = 10

#net.ipv4.conf.eth1.rp_filter = 0
#net.ipv4.conf.lo.arp_ignore = 1
#net.ipv4.conf.lo.arp_announce = 2
#net.ipv4.conf.all.arp_ignore = 1
#net.ipv4.conf.all.arp_announce = 2
  • vim /etc/security/limits.conf
root            soft    core            unlimited
root               hard    core            unlimited
root             soft    nproc           1000000
root             hard    nproc           1000000
root             soft    nofile          1000000
root               hard    nofile          1000000
root               soft    memlock         32000
root               hard    memlock         32000
root                soft    msgqueue        8192000
root               hard    msgqueue        8192000

系统优化完成后,重启所有服务器

reboot

ha1和ha2不用安装docker,其他主机都要安装docker

# 卸载之前安装过得docker(若之前没有安装过docker,直接跳过此步)
sudo yum remove docker docker-common docker-selinux docker-engine

# 安装docker需要的依赖包 (之前执行过,可以省略)
wget -O /etc/yum.repos.d/docker-ce.repo https://repo.huaweicloud.com/docker-ce/linux/centos/docker-ce.repo

# 安装docker软件
yum install docker-ce -y

# 配置镜像下载加速器
mkdir /etc/docker
cat > /etc/docker/daemon.json << EOF
{
  "registry-mirrors": ["https://hahexyip.mirror.aliyuncs.com"]
}
EOF

# 启动docker并加入开机自启动
systemctl enable docker && systemctl start docker

# 查看docker是否成功安装
docker version

在harbor主机安装docker-compose

# 下载安装Docker Compose
curl -L https://download.fastgit.org/docker/compose/releases/download/1.27.4/docker-compose-`uname -s`-`uname -m` > /usr/local/bin/docker-compose

# 添加执行权限
chmod +x /usr/local/bin/docker-compose 

# 检查安装版本
docker-compose --version 

# bash命令补全
curl -L https://raw.githubusercontent.com/docker/compose/1.25.5/contrib/completion/bash/er-compose > /etc/bash_completion.d/docker-compose

部署过程

  1. 基础环境准备
  2. 部署harbor及haproxy高可用反向代理
  3. 在所有master安装指定版本的kubeadm 、kubelet、kubectl、docker
  4. 在所有node节点安装指定版本的kubeadm 、kubelet、docker,在node节点kubectl为可选安装,看是否需要在node执行kubectl命令进行集群管理及pod管理等操作
  5. master节点运行kubeadm init初始化命令
  6. 验证master节点状态
  7. 在node节点使用kubeadm命令将自己加入k8s master(需要使用master生成token认证)
  8. 验证node节点状态
  9. 创建pod并测试网络通信
  10. 部署web服务Dashboard
  11. k8s集群升级案例

在ha1和ha2主机上分别安装keepalived和haproxy

yum -y install keepalived haproxy

修改ha1的keepalived配置文件

  • vim /etc/keepalived/keepalived.conf
! Configuration File for keepalived

global_defs {
   notification_email {
     acassen
   }
   notification_email_from Alexandre.Cassen@firewall.loc
   smtp_server 192.168.200.1
   smtp_connect_timeout 30
   router_id LVS_DEVEL
}

vrrp_instance VI_1 {
    state MASTER
    interface eth0
    virtual_router_id 55
    priority 100
    advert_int 1
    authentication {
        auth_type PASS
        auth_pass 1111
    }
    virtual_ipaddress {
        192.168.15.188 dev eth0 label eth0:1
    }
}

修改ha2的keepalived配置文件

  • vim /etc/keepalived/keepalived.conf
! Configuration File for keepalived

global_defs {
   notification_email {
     acassen
   }
   notification_email_from Alexandre.Cassen@firewall.loc
   smtp_server 192.168.200.1
   smtp_connect_timeout 30
   router_id LVS_DEVEL
}

vrrp_instance VI_1 {
    state BACKUP
    interface eth0
    virtual_router_id 55
    priority 80
    advert_int 1
    authentication {
        auth_type PASS
        auth_pass 1111
    }
    virtual_ipaddress {
        192.168.15.188 dev eth0 label eth0:1
    }
}

分别重启ha1和ha2的keepalived服务

systemctl restart keepalived && systemctl enable keepalived

修改ha1的haproxy配置文件

  • vim /etc/haproxy/haproxy.cfg
listen stats
 mode http
 bind 0.0.0.0:9999
 stats enable
 log global
 stats uri     /haproxy-status     # 入口URL
 stats auth   admin:123   # 用户名、密码

listen k8s-6443
 bind 192.168.15.188:6443
 mode tcp
 balance roundrobin
  # apiserver的默认端口号为6443
 server 192.168.15.201 192.168.15.201:6443 check inter 2s fall 3 rise 5
 server 192.168.15.202 192.168.15.202:6443 check inter 2s fall 3 rise 5
 server 192.168.15.203 192.168.15.203:6443 check inter 2s fall 3 rise 5

修改ha2的haproxy配置文件

  • vim /etc/haproxy/haproxy.cfg
listen stats
 mode http
 bind 0.0.0.0:9999
 stats enable
 log global
 stats uri     /haproxy-status     # 入口URL
 stats auth   admin:123   # 用户名、密码

listen k8s-6443
 bind 192.168.15.188:6443
 mode tcp
 balance roundrobin
 # apiserver的默认端口号为6443
 server 192.168.15.201 192.168.15.201:6443 check inter 2s fall 3 rise 5		
 server 192.168.15.202 192.168.15.202:6443 check inter 2s fall 3 rise 5
 server 192.168.15.203 192.168.15.203:6443 check inter 2s fall 3 rise 5

分别重启ha1和ha2的haproxy服务

systemctl restart haproxy && systemctl enable haproxy

在harbor主机上部署harbor服务


mkdir /apps
cd /apps
rz -E harbor-offline-installer-v2.1.0.tgz	
tar -xvf harbor-offline-installer-v2.1.0.tgz 
cd harbor/
cp harbor.yml.tmpl harbor.yml

vim harbor.yml
...
hostname: harbor.nana.com       # harbor的域名
# https:		# 13行
# port: 443		# 15行
# certificate: /your/certificate/path	# 17行
# private_key: /your/private/key/path	# 18行
harbor_admin_password: 123		# 密码

 ./install.sh

在所有的master节点和所有的node节点都添加harbor.yml的域名解析

  • vim /etc/hosts
192.168.15.206 harbor.nana.com

在本地电脑主机添加域名解析

C:\Windows\System32\drivers\etc\hosts
192.168.15.206 		harbor.nana.com

nginx更新crt_elasticsearch_02

在所有的master主机和所有的node主机安装kubeadm,kubectl,kubelet

cat <<EOF > /etc/yum.repos.d/kubernetes.repo
[kubernetes]
name=Kubernetes
baseurl=https://mirrors.aliyun.com/kubernetes/yum/repos/kubernetes-el7-x86_64/
enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://mirrors.aliyun.com/kubernetes/yum/doc/yum-key.gpg https://mirrors.aliyun.com/kubernetes/yum/doc/rpm-package-key.gpg
EOF
setenforce 0	
# 安装旧版本的K8S,方便我们后面做升级
yum install -y kubeadm-1.18.18-0 kubectl-1.18.18-0 kubelet-1.18.18-0
systemctl enable kubelet && systemctl start kubelet

k8s-master01主机运行kubeadm init初始化命令:

# completion  	 bash命令补全,需要安装bash-completion
mkdir /data/scripts -p
kubeadm completion bash > /data/scripts/kubeadm_completion.sh
source /data/scripts/kubeadm_completion.sh

vim /etc/profile
...
source /data/scripts/kubeadm_completion.sh
....

source /etc/profile
  • vim images-download.sh
#!/bin/bash
docker pull registry.cn-hangzhou.aliyuncs.com/google_containers/kube-apiserver:v1.18.18
docker pull registry.cn-hangzhou.aliyuncs.com/google_containers/kube-controller-manager:v1.18.18
docker pull registry.cn-hangzhou.aliyuncs.com/google_containers/kube-scheduler:v1.18.18
docker pull registry.cn-hangzhou.aliyuncs.com/google_containers/kube-proxy:v1.18.18
docker pull registry.cn-hangzhou.aliyuncs.com/google_containers/pause:3.2
docker pull registry.cn-hangzhou.aliyuncs.com/google_containers/etcd:3.4.13-0
docker pull registry.cn-hangzhou.aliyuncs.com/google_containers/coredns:1.6.7

下载镜像

bash images-download.sh

基于命令初始化高可用集群,在k8s-master01主机执行

echo "1" >/proc/sys/net/bridge/bridge-nf-call-iptables

kubeadm init \
--apiserver-advertise-address=192.168.15.201 \
--control-plane-endpoint=192.168.15.188 \
--apiserver-bind-port=6443 \
--kubernetes-version=v1.18.18 \
--pod-network-cidr=10.100.0.0/16 \
--service-cidr=10.200.0.0/16 \
--service-dns-domain=nana.local \
--image-repository=registry.cn-hangzhou.aliyuncs.com/google_containers \
--ignore-preflight-errors=swap

# 初始化完成后的输出信息
...
Your Kubernetes control-plane has initialized successfully!

To start using your cluster, you need to run the following as a regular user:

  mkdir -p $HOME/.kube
  sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
  sudo chown $(id -u):$(id -g) $HOME/.kube/config

You should now deploy a pod network to the cluster.
Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:
  https://kubernetes.io/docs/concepts/cluster-administration/addons/

You can now join any number of control-plane nodes by copying certificate authorities
and service account keys on each node and then running the following as root:

# 添加master节点集群
  kubeadm join 192.168.15.188:6443 --token e072ik.fwvribqtud66lmt6 \
    --discovery-token-ca-cert-hash sha256:073d195be2e36db6bd40bec545ab5ca61df3b4d8b4626ef2a90e3a14d20c04c9 \
    --control-plane 

Then you can join any number of worker nodes by running the following on each as root:

# node节点加入集群管理命令
kubeadm join 192.168.15.188:6443 --token e072ik.fwvribqtud66lmt6 \
    --discovery-token-ca-cert-hash sha256:073d195be2e36db6bd40bec545ab5ca61df3b4d8b4626ef2a90e3a14d20c04c9

下载网络插件

wget https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml
  • vim kube-flannel.yml
# 修改文件内容Network
...
  net-conf.json: |
    {
      "Network": "10.100.0.0/16",
      "Backend": {
        "Type": "vxlan"
      }
    }
...

在k8s-master01主机执行,生产kube-config文件

# Kube-config文件中包含kube-apiserver地址及相关认证信息
mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config
kubectl apply -f kube-flannel.yml

在所有的node节点上执行

# 将所有的node节点添加至master节点
echo "1" >/proc/sys/net/bridge/bridge-nf-call-iptables

kubeadm join 192.168.15.188:6443 --token e072ik.fwvribqtud66lmt6     --discovery-token-ca-cert-hash sha256:073d195be2e36db6bd40bec545ab5ca61df3b4d8b4626ef2a90e3a14d20c04c9

在k8s-master01主机执行,生成证书用于添加新的管理节点:

kubeadm init phase upload-certs --upload-certs

# 生成证书用于添加新控制节点
...
[kubelet.config.k8s.io kubeproxy.config.k8s.io]
[upload-certs] Storing the certificates in Secret "kubeadm-certs" in the "kube-system" Namespace
[upload-certs] Using certificate key:
37c3c10a641f798d0be9e2a3769718239ec2c3d4d399fe51c37944e7b3b2a935

在k8s-master02和k8s-master03执行如下命令,将两个管理节点添加至管理节点集群

echo "1" >/proc/sys/net/bridge/bridge-nf-call-iptables

  kubeadm join 192.168.15.188:6443 --token e072ik.fwvribqtud66lmt6 \
    --discovery-token-ca-cert-hash sha256:073d195be2e36db6bd40bec545ab5ca61df3b4d8b4626ef2a90e3a14d20c04c9 \
    --control-plane --certificate-key 37c3c10a641f798d0be9e2a3769718239ec2c3d4d399fe51c37944e7b3b2a935

# 输出信息,如果想在k8s-master02和k8s-master03节点使用kubectl命令,
# 则需要在k8s-master02和k8s-master03节点执行如下操作
...
To start administering your cluster from this node, you need to run the following as a regular user:

	mkdir -p $HOME/.kube
	sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
	sudo chown $(id -u):$(id -g) $HOME/.kube/config

Run 'kubectl get nodes' to see this node join the cluster.

在k8s-master01主机执行,查看整个集群的所有节点

kubectl get node
NAME           STATUS   ROLES    AGE     VERSION
k8s-master01   Ready    master   105m    v1.18.18
k8s-master02   Ready    master   6m47s   v1.18.18
k8s-master03   Ready    master   6m55s   v1.18.18
k8s-node01     Ready    <none>   39m     v1.18.18
k8s-node02     Ready    <none>   37m     v1.18.18
k8s-node03     Ready    <none>   35m     v1.18.18

nginx更新crt_nginx更新crt_03

在k8s-master01主机执行,创建测试容器,测试网络连接是否可以通信

kubectl run net-test1 --image=alpine sleep 360000
kubectl run net-test2 --image=alpine sleep 360000
kubectl run net-test3 --image=alpine sleep 360000

kubectl get pod -o wide
NAME        READY   STATUS    RESTARTS   AGE     IP           NODE         NOMINATED NODE   READINESS GATES
net-test1   1/1     Running   0          5m47s   10.100.1.2   k8s-node01   <none>           <none>
net-test2   1/1     Running   0          4m25s   10.100.2.3   k8s-node02   <none>           <none>
net-test3   1/1     Running   0          4m21s   10.100.3.3   k8s-node03   <none>           <none>

# 进入容器内部测试pod网络是否可以正常通信
kubectl exec -it net-test1 sh
kubectl exec [POD] [COMMAND] is DEPRECATED and will be removed in a future version. Use kubectl kubectl exec [POD] -- [COMMAND] instead.
/ # ping 10.100.2.3
PING 10.100.2.3 (10.100.2.3): 56 data bytes
64 bytes from 10.100.2.3: seq=0 ttl=62 time=0.781 ms
64 bytes from 10.100.2.3: seq=1 ttl=62 time=0.323 ms
--- 10.100.2.3 ping statistics ---

/ # ping www.baidu.com
PING www.baidu.com (112.80.248.75): 56 data bytes
64 bytes from 112.80.248.75: seq=0 ttl=127 time=10.008 ms
64 bytes from 112.80.248.75: seq=1 ttl=127 time=11.663 ms
--- www.baidu.com ping statistics ---

/ # exit

部署dashborad插件

k8s-master01主机执行操作

# 拉取dashboard:v2.0.3镜像,并打上标签
docker pull kubernetesui/dashboard:v2.0.3
docker tag docker.io/kubernetesui/dashboard:v2.0.3 harbor.nana.com/nana/dashboard:v2.0.3

# 添加本地harbor仓库地址
vim /lib/systemd/system/docker.service
...
[Service]
Type=notify
ExecStart=/usr/bin/dockerd -H fd:// --containerd=/run/containerd/containerd.sock --insecure-registry harbor.nana.com
...

# 重启docker
systemctl daemon-reload
systemctl restart docker

# 登陆harbor镜像仓库,上传dashboard镜像
docker login  harbor.nana.com
docker push harbor.nana.com/nana/dashboard:v2.0.3

# 拉取metrics-scraper:v1.0.4镜像,并打上标签,上传至harbor镜像仓库
docker pull kubernetesui/metrics-scraper:v1.0.4
docker tag kubernetesui/metrics-scraper:v1.0.4 harbor.nana.com/nana/metrics-scraper:v1.0.4
docker push harbor.nana.com/nana/metrics-scraper:v1.0.4

# 下载recommended.yaml文件
wget https://raw.githubusercontent.com/kubernetes/dashboard/v2.0.3/aio/deploy/recommended.yaml

# 修改recommended.yaml文件
vim recommended.yaml
...
kind: Service
apiVersion: v1
metadata:
  labels:
    k8s-app: kubernetes-dashboard
  name: kubernetes-dashboard
  namespace: kubernetes-dashboard
spec:
  type: NodePort
  ports:
    - port: 443
      targetPort: 8443
      nodePort: 30002
  selector:
    k8s-app: kubernetes-dashboard
...
    spec:
      containers:
        - name: dashboard-metrics-scraper
          image: harbor.nana.com/nana/metrics-scraper:v1.0.4
          ports:
            - containerPort: 8000
              protocol: TCP                   
...
    spec:
      containers:
        - name: kubernetes-dashboard
          image: harbor.nana.com/nana/dashboard:v2.0.3
          imagePullPolicy: Always
          ports:
            - containerPort: 8443
              protocol: TCP
...



# 创建集群账号文件
vim admin-user.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
  name: admin-user
  namespace: kubernetes-dashboard

---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: admin-user
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: cluster-admin
subjects:
- kind: ServiceAccount
  name: admin-user
  namespace: kubernetes-dashboard

kubectl apply -f recommended.yaml
kubectl apply -f admin-user.yaml

# 获取token密钥信息
kubectl get secret -A | grep admin-user-token
# kubernetes-dashboard   admin-user-token-5zsqh                           kubernetes.io/service-account-token   3      24m

kubectl describe secret admin-user-token-5zsqh -n kubernetes-dashboard
...
token:      eyJhbGciOiJSUzI1NiIsImtpZCI6InRUQzRjM1lxZ2dmcUNoS1RxNXgxZ2hMVG0zN0p1Tk5sQXRvNl9lOHRxN3MifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlcm5ldGVzLWRhc2hib2FyZCIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VjcmV0Lm5hbWUiOiJhZG1pbi11c2VyLXRva2VuLTV6c3FoIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZXJ2aWNlLWFjY291bnQubmFtZSI6ImFkbWluLXVzZXIiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC51aWQiOiJlZjZkNTA4Yi0xOWY1LTQ3N2MtOWNlZS1kMjdjNTAxYTZjODIiLCJzdWIiOiJzeXN0ZW06c2VydmljZWFjY291bnQ6a3ViZXJuZXRlcy1kYXNoYm9hcmQ6YWRtaW4tdXNlciJ9.JtIa_qIUNFP8GzCkMVOSCst8y4AA3-VIyzuPsE2jHhjJjI80eooI6RAVn1fYSXKQ-LRiHaI6VG0Iv9fn-yF-v6vL9cL2GvcIkxXJ80VWu1n9_5EYQLcdXsQYrwrz0x05rdH6A8wl8bpm6RRQoXt7LOB0rNye8VjOKwaxT09RF7ovdg4QNgIaFNyUZ-e-ecRP-ckkan13Ii7J_74VIhkSuf9bjnT0tD5hu5whIP4ORYIlRZL0xePiGkoeDbMuzwZkC43WcPSkqJ3NvY9gY-BbDwDkCvRsjGyfBd6x3jXy7KFFMNElV2Jp8aDn_Dg6n_uEQ_TOYWn5yOsV4e1gAMGNXg

在所有的node主机运行,添加本地harbor仓库地址

vim /lib/systemd/system/docker.service
...
[Service]
Type=notify
ExecStart=/usr/bin/dockerd -H fd:// --containerd=/run/containerd/containerd.sock --insecure-registry harbor.nana.com
...

# 重启docker
systemctl daemon-reload
systemctl restart docker
#以上操作完成后,可以去任意node节点或者master节点查看端口号
netstat -lntp | grep 30002
# tcp        0      0 0.0.0.0:30002           0.0.0.0:*               LISTEN      23251/kube-proxy

nginx更新crt_nginx更新crt_04

Nginx实现动静分离

k8s-master01主机执行操作

# 将nginx1.14.2上传至本地的harbor镜像仓库
docker pull nginx:latest
docker tag nginx:latest harbor.nana.com/nana/nginx:latest
docker push harbor.nana.com/nana/nginx:latest

# 创建nginx.yaml文件
vim nginx.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx-deployment
  labels:
    app: nginx
spec:
  replicas: 1
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: harbor.nana.com/nana/nginx:latest
        ports:
        - containerPort: 80
        
---
kind: Service
apiVersion: v1
metadata:
  labels:
    app: test-nginx-service-label
  name: test-nginx-service
  namespace: default
spec:
  type: NodePort
  ports:
  - name: http
    port: 80
    protocol: TCP
    targetPort: 80
    nodePort: 30004
  selector:
    app: nginx

# 执行nginx.yaml文件
kubectl apply -f nginx.yaml 

# 查看service的信息
kubectl get service
# NAME                 TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)        AGE
# kubernetes           ClusterIP   10.200.0.1     <none>        443/TCP        6h47m
# test-nginx-service   NodePort    10.200.9.197   <none>        80:30004/TCP   9s


# 此时,我们只能通过30004端口号访问到本机的nginx服务
# nodePort(主机端口号30004)==>port(service端口号80)==>targetPort(pod端口号80)

nginx更新crt_正则表达式_05

ha1主机和ha2主机同时执行操作

# 新增keepalived服务虚拟ip地址
vim /etc/keepalived/keepalived.conf	
...
    virtual_ipaddress {
        192.168.15.188 dev eth0 label eth0:1
        192.168.15.189 dev eth0 label eth0:2
    }
}

# 重启keepalived服务
systemctl reload keepalived



# 新增haproxy负载均衡虚拟ip地址
vim /etc/haproxy/haproxy.cfg
...
# 新增如下
listen nana-nginx-80
 bind 192.168.15.189:80
 mode tcp
 server 192.168.15.207 192.168.15.207:30004 check inter 2s fall 3 rise 5
 server 192.168.15.208 192.168.15.208:30004 check inter 2s fall 3 rise 5
 server 192.168.15.209 192.168.15.209:30004 check inter 2s fall 3 rise 5

# 重启haproxy服务
systemctl reload haproxy

nginx更新crt_搜索引擎_06

k8s-master01主机执行操作

# 将tomcat:latest上传至本地的harbor镜像仓库
docker pull tomcat:latest
docker tag tomcat:latest harbor.nana.com/nana/tomcat:latest
docker push harbor.nana.com/nana/tomcat:latest

# 创建tomcat.yaml文件
vim tomcat.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  namespace: default
  name: tomcat-deployment
  labels:
    app: tomcat
spec:
  replicas: 1
  selector:
    matchLabels:
      app: tomcat
  template:
    metadata:
      labels:
        app: tomcat
    spec:
      containers:
      - name: tomcat
        image: harbor.nana.com/nana/tomcat:latest
        ports:
        - containerPort: 8080

---
kind: Service
apiVersion: v1
metadata:
  labels:
    app: test-tomcat-service-label
  name: test-tomcat-service
  namespace: default
spec:
  type: NodePort
  ports:
  - name: http
    port: 80
    protocol: TCP
    targetPort: 8080
    nodePort: 30005
  selector:
    app: tomcat

# 执行tomcat.yaml文件
kubectl apply -f tomcat.yaml 

# 查看services信息
kubectl get services
# NAME                  TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)        AGE
# kubernetes            ClusterIP   10.200.0.1      <none>        443/TCP        7h50m
# test-nginx-service    NodePort    10.200.9.197    <none>        80:30004/TCP   63m
# test-tomcat-service   NodePort    10.200.144.50   <none>        80:30005/TCP   2m8s

# 查看pod信息
kubectl get pods
# NAME                                READY   STATUS    RESTARTS   AGE
# net-test1                           1/1     Running   1          18h
# net-test2                           1/1     Running   1          18h
# net-test3                           1/1     Running   1          18h
# nginx-deployment-5c4cf9b8b9-brdjc   1/1     Running   0          11h
# tomcat-deployment-594978dc8-lp8mq   1/1     Running   0          10h

# 进入 tomcat服务容器 生成 app
kubectl exec -it tomcat-deployment-594978dc8-lp8mq bash
mkdir webapps/tomcat
cd webapps/tomcat/
echo "nana520" > index.jsp
exit

nginx更新crt_elasticsearch_07

k8s-master01主机执行操作,实现动静分离

nginx更新crt_nginx更新crt_08

# 新增一个tomcat服务的pod节点
kubectl scale -n default deployment tomcat-deployment --replicas=2

kubectl get pods
# NAME                                READY   STATUS    RESTARTS   AGE
# net-test1                           1/1     Running   1          22h
# net-test2                           1/1     Running   1          22h
# net-test3                           1/1     Running   1          22h
# nginx-deployment-5c4cf9b8b9-brdjc   1/1     Running   0          15h
# tomcat-deployment-594978dc8-hwr9b   1/1     Running   0          3h
# tomcat-deployment-594978dc8-lp8mq   1/1     Running   0          14h

# 进入 tomcat服务容器 生成 app
kubectl exec -it tomcat-deployment-594978dc8-hwr9b bash
mkdir webapps/tomcat
cd webapps/tomcat/
echo "nana521" > index.jsp
exit

kubectl get svc
# NAME                  TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)        AGE
# kubernetes            ClusterIP   10.200.0.1      <none>        443/TCP        20h
# test-nginx-service    NodePort    10.200.9.197    <none>        80:30004/TCP   13h
# test-tomcat-service   NodePort    10.200.144.50   <none>        80:30005/TCP   12h

# 进入到nginx Pod
kubectl exec -it nginx-deployment-5c4cf9b8b9-brdjc bash
cat /etc/issue
# Debian GNU/Linux 10 \n \l

# 更新软件源并安装基础命令
apt update
apt install procps vim iputils-ping net-tools curl

ping test-tomcat-service
# PING test-tomcat-service.default.svc.nana.local (10.200.144.50) 56(84) bytes of data.

# 在nginx服务的pod节点内访问测试
curl test-tomcat-service.default.svc.nana.local/tomcat/index.jsp
# nana520
curl test-tomcat-service.default.svc.nana.local/tomcat/index.jsp
# nana521

vim /etc/nginx/conf.d/default.conf
....
 location /tomcat {
     proxy_pass http://test-tomcat-service.default.svc.nana.local;
   }

nginx -t
# nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
# nginx: configuration file /etc/nginx/nginx.conf test is successful

nginx -s reload
# 2021/08/17 10:42:37 [notice] 3779#3779: signal process started

exit

测试访问web页面

nginx更新crt_nginx更新crt_09


nginx更新crt_搜索引擎_10


nginx更新crt_正则表达式_11

K8s升级

K8s可以实现在线升级,且升级过程中是不会影响到现有业务

升级k8s集群必须先升级kubeadm版本到目的k8s版本,也就是说kubeadm是k8s升级的准升证。

升级准备: 在k8s的所有master节点进行组件升级,将管理端服务kube-controller-managerkube-apiserverkube-schedulerkube-proxy进行版本升级。

所有的master节点都执行操作

# 查看当前的 kubeadm 版本
kubeadm version
# kubeadm version: &version.Info{Major:"1", Minor:"18", GitVersion:"v1.18.18", GitCommit:"6f6ce59dc8fefde25a3ba0ef0047f4ec6662ef24", GitTreeState:"clean", BuildDate:"2021-04-15T03:29:14Z", GoVersion:"go1.13.15", Compiler:"gc", Platform:"linux/amd64"}

# 查看版本列表	
yum list --showduplicates kubeadm 

# 升级 kubeadm	--disableexcludes=kubernetes  禁掉除了这个之外的别的仓库
yum install -y kubeadm-1.18.20-0 --disableexcludes=kubernetes

# 验证 kubeadm 版本
kubeadm version
# kubeadm version: &version.Info{Major:"1", Minor:"18", GitVersion:"v1.18.20", GitCommit:"1f3e19b7beb1cc0110255668c4238ed63dadb7ad", GitTreeState:"clean", BuildDate:"2021-06-16T12:56:41Z", GoVersion:"go1.13.15", Compiler:"gc", Platform:"linux/amd64"}

# 验证升级计划,查看新版本与旧版本的差别 
kubeadm upgrade plan
# [upgrade/config] Making sure the configuration is correct:
# [upgrade/config] Reading configuration from the cluster...
# [upgrade/config] FYI: You can look at this config file with 'kubectl -n kube-system get cm kubeadm-config -oyaml'
# [preflight] Running pre-flight checks.
# [upgrade] Running cluster health checks
# [upgrade] Fetching available versions to upgrade to
# [upgrade/versions] Cluster version: v1.18.18
# [upgrade/versions] kubeadm version: v1.18.20
# I0818 04:57:25.408377   10279 version.go:255] remote version is much newer: v1.22.0; falling back to: stable-1.18
# [upgrade/versions] Latest stable version: v1.18.20
# [upgrade/versions] Latest stable version: v1.18.20
# [upgrade/versions] Latest version in the v1.18 series: v1.18.20
# [upgrade/versions] Latest version in the v1.18 series: v1.18.20

# Components that must be upgraded manually after you have upgraded the control plane with 'kubeadm upgrade apply':
# COMPONENT   CURRENT        AVAILABLE
# Kubelet     6 x v1.18.18   v1.18.20

# Upgrade to the latest version in the v1.18 series:

# COMPONENT            CURRENT    AVAILABLE
# API Server           v1.18.18   v1.18.20
# Controller Manager   v1.18.18   v1.18.20
# Scheduler            v1.18.18   v1.18.20
# Kube Proxy           v1.18.18   v1.18.20
# CoreDNS              1.6.7      1.6.7
# Etcd                 3.4.3      3.4.3-0

# You can now apply the upgrade by executing the following command:

	kubeadm upgrade apply v1.18.20

# _____________________________________________________________________


# 执行升级,底层其实就是通过 kubeadm 拉取新K8S的镜像
kubeadm upgrade apply v1.18.20

# 验证镜像
docker images
# REPOSITORY                                                                    TAG        IMAGE ID       CREATED         SIZE
# quay.io/coreos/flannel                                                        v0.15.1    e6ea68648f0c   2 weeks ago     69.5MB
# rancher/mirrored-flannelcni-flannel-cni-plugin                                v1.0.0     cd5235cd7dc2   4 weeks ago     9.03MB
# registry.cn-hangzhou.aliyuncs.com/google_containers/kube-proxy                v1.18.20   27f8b8d51985   5 months ago    117MB
# registry.cn-hangzhou.aliyuncs.com/google_containers/kube-apiserver            v1.18.20   7d8d2960de69   5 months ago    173MB
# registry.cn-hangzhou.aliyuncs.com/google_containers/kube-scheduler            v1.18.20   a05a1a79adaa   5 months ago    96.1MB
# registry.cn-hangzhou.aliyuncs.com/google_containers/kube-controller-manager   v1.18.20   e7c545a60706   5 months ago    162MB
# registry.cn-hangzhou.aliyuncs.com/google_containers/kube-proxy                v1.18.18   8bd0db6f4d0a   7 months ago    117MB
# registry.cn-hangzhou.aliyuncs.com/google_containers/kube-controller-manager   v1.18.18   9fb627f53264   7 months ago    162MB
# registry.cn-hangzhou.aliyuncs.com/google_containers/kube-scheduler            v1.18.18   fe100f0c6984   7 months ago    96.1MB
# registry.cn-hangzhou.aliyuncs.com/google_containers/kube-apiserver            v1.18.18   5745154baa89   7 months ago    173MB
...

 
# 升级 kubelet 和 kubectl
yum install -y kubelet-1.18.20 kubectl-1.18.20 --disableexcludes=kubernetes

#重启 kubelet
systemctl daemon-reload && systemctl restart kubelet

k8s-master01主机执行操作

# 升级各node节点的配置文件
kubeadm upgrade node --kubelet-version 1.18.20

所有node节点都执行操作

# 升级 kubeadm , kubelet 和 kubectl    --disableexcludes=kubernetes(禁掉除了这个之外的别的仓库)
yum install -y kubeadm-1.18.20-0 kubelet-1.18.20 kubectl-1.18.20 --disableexcludes=kubernetes

#重启 kubelet
systemctl daemon-reload && systemctl restart kubelet

验证是否升级成功

kubectl get node
# NAME           STATUS   ROLES    AGE   VERSION
# k8s-master01   Ready    master   90m   v1.18.20
# k8s-master02   Ready    master   80m   v1.18.20
# k8s-master03   Ready    master   81m   v1.18.20
# k8s-node01     Ready    <none>   88m   v1.18.20
# k8s-node02     Ready    <none>   88m   v1.18.20
# k8s-node03     Ready    <none>   88m   v1.18.20