Opencv学习笔记(二)-----常用的处理方法
- 前言
- 1.阈值处理
- 2.平滑操作
- 3.形态学变化
- 1.腐蚀和膨胀
- 2.开运算和闭运算
- 4.梯度运算
- 5.礼帽与黑帽
- 6.图像梯度-Sobel算子
- 7.三种算子对比
前言
本篇记录使用opencv处理图像时经常使用的几种处理方法,一般会混合使用以达到最好的效果;每种方法有详细代码、原图和处理后图片的对比图。
1.阈值处理
cv2.threshold (src, thresh, maxval, type)
src:原图片的灰度图,必须是单通道;
thresh:阈值,取值范围0~255;
maxval:填充色,取值范围0~255;
type:阈值类型见下表;
注:保持原色即原像素点的值
阈值 | 小于阈值的像素 | 大于阈值的像素 |
THRESH_BINARY | 0 | maxval |
THRESH_BINARY_INV | maxval | 0 |
THRESH_TRUNC | 保持原色 | maxval |
THRESH_TOZERO | 0 | 保持原色 |
THRESH_TOZERO_INV | 保持原色 | 0 |
代码如下:
# -*- coding: utf-8 -*-
import cv2
import numpy as np
from matplotlib import pyplot as plt
# 读取灰度图像--根据灰度图像的阈值对图像进行二值化处理
img_gray = cv2.imread('credit_card_01.png',0)#读取灰度图像
ret,thresh1 = cv2.threshold(img_gray,127,255,cv2.THRESH_BINARY)
ret,thresh2 = cv2.threshold(img_gray,127,255,cv2.THRESH_BINARY_INV)
ret,thresh3 = cv2.threshold(img_gray,127,255,cv2.THRESH_TRUNC)
ret,thresh4 = cv2.threshold(img_gray,127,255,cv2.THRESH_TOZERO)
ret,thresh5 = cv2.threshold(img_gray,127,255,cv2.THRESH_TOZERO_INV)
titles = ["Original Image","BINAYR","BINARY_INV","TRUNC","TOZERO","TOZERO_INV"]
images = [img_gray,thresh1,thresh2,thresh3,thresh4,thresh5]
for i in range(6):
plt.subplot(2,3,i+1),plt.imshow(images[i],"gray")
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()
上图为原图,下图为各个阈值处理后的图
2.平滑操作
平滑操作的几种方法;第一张图为均值滤波图、高斯滤波图、中值滤波对比图;第二张为均值滤波图、方框滤波图、方框滤波越界对比图;
# -*- coding: utf-8 -*-
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('picture.png')
blur = cv2.blur(img,(3,3)) #均值滤波,简单的平均卷积操作,通常用奇数
box1 = cv2.boxFilter(img,-1,(3,3),normalize=True) #方框滤波,基本和均值滤波一样,可选择归一化
box2 = cv2.boxFilter(img,-1,(3,3),normalize=False) #方框滤波,基本和均值滤波一样,可选择归一化容易越界,越界时大于255的值在图像中显示为全白
aussian = cv2.GaussianBlur(img,(5,5),1) #高斯滤波,高斯模糊的卷积核里的数值满足卷积的高斯分布,相当于重视中间的
#卷积核就是[n,n]
median = cv2.medianBlur(img,5) #中值滤波,相当于用中值代替
res = np.hstack((blur,aussian,median))
cv2.imshow('picture-1',res)#为图1:均值滤波图、高斯滤波图、中值滤波对比图
cv2.waitKey(0)
cv2.destroyAllWindows()
res2 = np.hstack((blur,box1,box2))
cv2.imshow('picture-2',res2)#为图2:均值滤波图、方框滤波图、方框滤波越界对比图
cv2.waitKey(0)
cv2.destroyAllWindows()
3.形态学变化
1.腐蚀和膨胀
# -*- coding: utf-8 -*-
import cv2
import numpy as np
img = cv2.imread('dige.png')
#腐蚀操作
kernel = np.ones((5,5),np.uint8)
erosion = cv2.erode(img,kernel,iterations=1)#iterations表示操作次数
#膨胀操作
dilate = cv2.dilate(erosion,kernel,iterations=1) #腐蚀操作过后对图片造成一定损伤,用膨胀操作还原图像
res = np.hstack((img, erosion, dilate))
cv2.imshow('erosion', res)
cv2.imwrite('contrast2.png', res)
#contrast2为原图、腐蚀、膨胀操作对比图
cv2.waitKey(0)
cv2.destroyAllWindows()
2.开运算和闭运算
开运算:先腐蚀再膨胀;
闭运算:先膨胀再腐蚀;
# -*- coding: utf-8 -*-
import cv2
import numpy as np
img = cv2.imread('dige.png')
#开运算:先腐蚀再膨胀--毛刺去掉
kernel = np.ones((5,5),np.uint8)
open = cv2.morphologyEx(img,cv2.MORPH_OPEN,kernel)
#闭运算:先膨胀再腐蚀--还是原图像,毛刺并未去掉
close = cv2.morphologyEx(img,cv2.MORPH_CLOSE,kernel)
res = np.hstack((img, open,close))
cv2.imshow('erosion', res)
cv2.imwrite('contrast3.png', res)
#contrast3为原图、开、闭运算对比图
cv2.waitKey(0)
cv2.destroyAllWindows()
4.梯度运算
梯度运算=膨胀-腐蚀;
# -*- coding: utf-8 -*-
import cv2
import numpy as np
from matplotlib import pyplot as plt
#梯度=膨胀-腐蚀
pie = cv2.imread('pie.png')
kernel = np.ones((7,7),np.uint8)
# erosion = cv2.erode(pie,kernel,iterations=5)
# dilate = cv2.dilate(pie,kernel,iterations=5)
gradient = cv2.morphologyEx(pie,cv2.MORPH_GRADIENT,kernel)
res = np.hstack((pie, gradient))
cv2.imshow('erosion', res)
cv2.imwrite('gradient.png', res)
#gradient为原图、梯度运算对比图
cv2.waitKey(0)
cv2.destroyAllWindows()
5.礼帽与黑帽
礼帽 = 原始输入 - 开运算;
黑帽 = 闭运算 - 原始输入;
# -*- coding: utf-8 -*-
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('dige.png')
kernel = np.ones((5,5),np.uint8)
#礼帽 = 原始输入 - 开运算结果
tophat = cv2.morphologyEx(img,cv2.MORPH_TOPHAT,kernel)
# 黑帽 = 闭运算 - 原始输入
blackhat = cv2.morphologyEx(img,cv2.MORPH_BLACKHAT,kernel)
res = np.hstack((img, tophat,blackhat))
cv2.imshow('erosion', res)
cv2.imwrite('hat.png', res)
#hat为原图、礼帽、黑帽对比图
cv2.waitKey(0)
cv2.destroyAllWindows()
6.图像梯度-Sobel算子
dst = cv2.Sobel(sec,ddepth,dx,dy,ksize)
ddepth:图像深度,##深度一般设置为-1,表示输出深度和输入深度一样
dx和dy:表示水平和竖直方向
ksize:是Sobel算子大小
# -*- coding: utf-8 -*-
import cv2
import numpy as np
from matplotlib import pyplot as plt
def cv_show(img,name,writename):
cv2.imshow(name,img)
cv2.imwrite(writename,img)
cv2.waitKey()
cv2.destroyAllWindows()
#读取图像
img = cv2.imread('pie.png')
#只有边界位置才会有梯度
#右减左,右为白=255,左为黑=0,所以从原图中,sobelx形成的图为左半边:右减左=白减黑>0,未显示的右半边图为右减左=黑减白<0,不显示原因是opencv对小于0的数做一个截断为0,所以要取绝对值
#左右边界计算和显示
sobelx1 = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)#写成能表示负数的形式,且dx=1,dy=0表示计算的是水平方向
sobelx2 = cv2.convertScaleAbs(sobelx1)#取绝对值
res = np.hstack((img, sobelx1,sobelx2))
cv_show(res,"sobelx",'X-sobelx.png')#X-sobelx为X方向原图,上边界的、和所有边界对比图
#上下边界计算和显示
sobely1 = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)#
sobely2 = cv2.convertScaleAbs(sobely1)#取绝对值
res = np.hstack((img, sobely1,sobely2))
cv_show(res,"sobely",'Y-sobely.png')#Y-sobely为Y方向原图,上边界的、和所有边界对比图
#上下边界的相加
# 分别计算X和Y,再相加
sobelxy = cv2.addWeighted(sobelx2,0.5,sobely2,0.5,0)#相加的系数根据项目修改
#直接相加和间接相加对比
sobelxy1 = cv2.Sobel(img,cv2.CV_64F,1,1,ksize=3)#直接计算水平和竖直方向
sobelxy2 = cv2.convertScaleAbs(sobelxy1)
res = np.hstack((sobelxy,sobelxy2))
cv_show(res,"indirect sobelxy2",'indirect X+Y.png')#Y-sobely为间接相加、直接相加对比图
用彩色图片对比代码和效果如下
# -*- coding: utf-8 -*-
import cv2
import numpy as np
from matplotlib import pyplot as plt
#加载彩色图片看看效果,读入的彩色图像的灰度图
def cv_show(img,name,writename):
cv2.imshow(name,img)
cv2.imwrite(writename,img)
cv2.waitKey()
cv2.destroyAllWindows()
img = cv2.imread('pie.png',0)
sobelx1 = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)#写成能表示负数的形式,且dx=1,dy=0表示计算的是水平方向
sobelx2 = cv2.convertScaleAbs(sobelx1)#取绝对值
sobely1 = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)#
sobely2 = cv2.convertScaleAbs(sobely1)
#间接相加
sobelxy = cv2.addWeighted(sobelx2,0.5,sobely2,0.5,0)#相加的系数根据项目修改
#直接相加
sobelxy1 = cv2.Sobel(img,cv2.CV_64F,1,1,ksize=3)#直接计算水平和竖直方向
sobelxy2 = cv2.convertScaleAbs(sobelxy1)
res = np.hstack((img,sobelxy,sobelxy2))
cv_show(res,"colours",'Dispose picture2.png')#三种方法对比图
7.三种算子对比
Sobel算子、Scharr算子和Laplacian算子;
# -*- coding: utf-8 -*-
import cv2
import numpy as np
# 08图像梯度-Scharr算子
# 图像梯度-laplacian算子:对噪音更敏感,所以会和其他方法一起使用效果更好
# 这两种算子对图像处理的效果更好
# 三种算子的差异对比
def cv_show(img,name,writename):
cv2.imshow(name,img)
cv2.imwrite(writename,img)
cv2.waitKey()
cv2.destroyAllWindows()
img = cv2.imread('picture.png',0)
sobelx1 = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
sobelx2 = cv2.convertScaleAbs(sobelx1)
sobely1 = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
sobely2 = cv2.convertScaleAbs(sobely1)
sobelxy = cv2.addWeighted(sobelx2,0.5,sobely2,0.5,0)
scahrrx = cv2.Scharr(img,cv2.CV_64F,1,0)
scahrrx = cv2.convertScaleAbs(scahrrx)
scahrry = cv2.Scharr(img,cv2.CV_64F,0,1)
scahrry = cv2.convertScaleAbs(scahrry)
scahrrxy = cv2.addWeighted(scahrrx,0.5,scahrry,0.5,0)
laplacian = cv2.Laplacian(img,cv2.CV_64F)
laplacian = cv2.convertScaleAbs(laplacian)
res = np.hstack((img,sobelxy, scahrrxy,laplacian))
#原图、sobel算子、scahrr算子、laplacian算子对比图
cv_show(res,'res','08-Comparison operator.png')