目录
载入库
一、折线图
二、散点图
三、条形图
四、柱状图
五、饼状图
六、直方图
七、箱线图
last but not list、如何给x、y轴坐标打上标签
END、如何叠加绘制图像
载入库
绘制表格我们需要用到python库中的matplotlib库
import matplotlib.pyplot as plt
一、折线图
# 绘制一条线是,x轴可以省略,默认用y轴数据的索引替代
plt.plot([0, 2, 4, 6, 8]) # 默认Y轴坐标,x轴按12345……算
plt.show()
plt.plot([0, 2, 4, 6, 8], [1, 5, 3, 9, 7]) # x轴坐标值,Y轴坐标值
plt.show()
接下来让我们看看怎么才能绘制更加炫酷的折线图
date = [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]
eurcny=[9, 3, 5, 7, 0, 10, 6, 1, 1, 42, 12, 3, 42, 4, 37, 45, 18, 481]
plt.plot(
date, # x轴数据,日期
eurcny, # y轴数据,收盘价
color='r', # 线条颜色
linestyle='--', # 线条风格
linewidth=1.0,# 线条粗细
marker='o', # 标记风格
markerfacecolor='#ffff00', # 标记颜色
markersize=10, # 标记大小
alpha=0.5, # 透明度
)
plt.show()
二、散点图
x = [1, 3, 5, 7, 9, 11, 13, 15, 17]
y = [2, -5, 19, 3, 5, 8, 12, 6, 1]
# 绘图
plt.scatter(x, y)
plt.show()
接下来让我们看看如何绘制更加炫酷的散点图
x = [1, 3, 5, 7, 9, 11, 13, 15, 17]
y = [2, -5, 19, 3, 5, 8, 12, 6, 1]
plt.scatter(
x, # x轴
y, # y轴
color='r', # 颜色
marker='o', # 样式
linewidth=20, # 线宽
alpha=0.3, # 透明度
# 散点大小,用于绘制气泡图,在散点图的基础上又增加了一个维度
s=[100, 300, 500, 700, 200, 400, 600, 800, 1000], # 大小
)
plt.show()
三、条形图
x=[1,2,3,4,5]
y=[1,2,3,4,5]
plt.barh(
x,#横条离开x轴的距离
y,#横条长度
height=0.5,#横条粗细
color='g',
)
plt.show()
四、柱状图
x=[1,2,3,4,5]
y=[3,6,1,8,2]
#柱状图,x轴为单根主张,y轴为柱子高度,可选参数width用于柱子粗细
plt.bar(x,y)
如何绘制更加炫酷的柱状图
#男生平均分,语文/数学/英语/物理/化学
boy=[85.5,91,72,59,66]
#女生平均分
girl=[94,82,89.5,62,49]
#科目坐标
course=[1,2,3,4,5]
#绘图,男生
plt.bar(
course,#x轴,科目
boy,#y轴,男生成绩
color='g',#颜色
width=0.3,
alpha=0.3,
)
#绘图,女生
#科目坐标
course2=[1.3,2.3,3.3,4.3,5.3]
plt.bar(
course2,#x轴,科目
girl,#y轴,女生成绩
color='r',#颜色
width=0.3,
)
plt.show()
五、饼状图
p=[15,30,45,10,20]
plt.pie(p)
plt.pie(p,labels=['china','russia','india','amarica','japan'],autopct='%1.1f%%')
plt.show()
如何绘制更加炫酷的饼图
#国名
mark=['china','russia','india','amarica','japan']
#各国战9军总军费的比例
percent=[0.55,0.144,0.321,0.312,0.312]
plt.pie(
percent,#百分比
autopct='%1.1f%%',#显示百分比方式
labels=mark,#名称
explode=(0.0,0.1,0.0,0.0,0.0)#突出块,突出比例
)
plt.show()
六、直方图
#1班成绩直方图
h1=[88.2,83.4,84.5,83.4,43,43,7,43,32,
3,83.4,84.5,83.4,42,43,43,5,32,
88.2,3,84.5,83.4,45,43,9,43,32,
7,81,84.5,83.4,4,8,43,43,32,
88.2,83,84.5,83.4,45,7,43,43,32,
88.2,3,84.5,83.4]
plt.hist(h1)
plt.show()
更加炫酷的直方图
#1班成绩直方图
h1=[88.2,83.4,84.5,83.4,43,43,7,43,32,
3,83.4,84.5,83.4,42,43,43,5,32,
88.2,3,84.5,83.4,45,43,9,43,32,
7,81,84.5,83.4,4,8,43,43,32,
88.2,83,84.5,83.4,45,7,43,43,32,
88.2,3,84.5,83.4]
# 增加功能:
plt.hist(
h1,#直方图数据
10,#直方个数
density=1,#默认0数据出现个数,1出现个数归一化为出现的频率
histtype='bar',#直方图样式:默认bar,stepfilled填充颜色,step不填充只有线条
facecolor='b',#直方图颜色
edgecolor='g',#直方图边框颜色
alpha=0.3,
)
plt.show()
七、箱线图
a=[15,5,9,22,4,-5,45,-22]
plt.boxplot(a)
plt.show()
更加炫酷的箱线图
a = [42, 33, 33, 3, 2, 44]
b = [4, 3, 3, 23, 32, 44]
c = [52, 23, 93, 13, 22, 44]
plt.boxplot(
(a, c, b), # 数据
labels=('a', 'c', 'b'), # 标签
showfliers=True, # 是否显示异常值,默认显示
whis=1.5, # 指定异常值参数,默认1.5倍四分位差
meanline=True, # 是否用线表示平均数,默认用点
widths=0.5, # 柱子宽度
vert=False, # 默认TRUE纵向,FALSE横向
patch_artist=True, # 是否填充颜色
)
plt.grid(linewidth=0.2)
plt.show()
last but not list、如何给x、y轴坐标打上标签
此处我们用柱状图来举例
#男生平均分,语文/数学/英语/物理/化学
boy=[85.5,91,72,59,66]
#女生平均分
girl=[94,82,89.5,62,49]
#科目坐标
course=[1,2,3,4,5]
#绘图,男生
plt.bar(
course,#x轴,科目
boy,#y轴,男生成绩
color='g',#颜色
width=0.3,
alpha=0.3,
)
#绘图,女生
#科目坐标
course2=[1.3,2.3,3.3,4.3,5.3]
plt.bar(
course2,#x轴,科目
girl,#y轴,女生成绩
color='r',#颜色
width=0.3,
)
#将数据标注在柱子上
for i,j in zip(course,boy):
plt.text(
i,#x轴,course学科位置
j,#y轴,boy分数
s=j,
ha='center',#水平对齐
va='bottom',#垂直对齐
alpha=0.5,
)
for i,j in zip(course2,girl):
plt.text(
i,
j,
s=j,
ha='center',
va='bottom',
alpha=0.5,
)
#科目坐标数值替换字符
course3=[1.15,2.15,3.15,4.15,5.15]
plt.xticks(course3,['Chi','Math','Eng','Phy','Che'])
plt.show()
END、如何叠加绘制图像
这里我们用一张散点图和一张折线图举例子。在此处我们将散点图和折线图分别编制出来之后,在使用plt.show,就可以发现我们的两张图标叠加在一起啦
x = [1, 3, 5, 7, 9, 11, 13, 15, 17]
y = [2, -5, 19, 3, 5, 8, 12, 6, 1]
plt.scatter(
x, # x轴
y, # y轴
color='r', # 颜色
marker='o', # 样式
linewidth=20, # 线宽
alpha=0.3, # 透明度
# 散点大小,用于绘制气泡图,在散点图的基础上又增加了一个维度
s=[100, 300, 500, 700, 200, 400, 600, 800, 1000], # 大小
)
date = [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]
eurcny=[9, 3, 5, 7, 0, 10, 6, 1, 1, 42, 12, 3, 42, 4, 37, 45, 18, 481]
plt.plot(
date, # x轴数据,日期
eurcny, # y轴数据,收盘价
color='r', # 线条颜色
linestyle='--', # 线条风格
linewidth=1.0,# 线条粗细
marker='o', # 标记风格
markerfacecolor='#ffff00', # 标记颜色
markersize=10, # 标记大小
alpha=0.5, # 透明度
)
plt.show()