问题1:telnet ip 9092端口不通,控制台错误:
[AdminClient clientId=adminclient-1] Connection to node -1 (/172.16.2.6:9092) could not be established. Broker may not be available.
答案:server.properties配置文件listeners=PLAINTEXT://:9092改成listeners=PLAINTEXT://ip:9092就可以了
1.pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.2.1.RELEASE</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<groupId>mis_timertask_service</groupId>
<artifactId>mis_timertask_service</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>mis_timertask_service</name>
<description>mis timer task service</description>
<properties>
<java.version>1.8</java.version>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
</dependency>
<dependency>
<groupId>org.mybatis.spring.boot</groupId>
<artifactId>mybatis-spring-boot-starter</artifactId>
<version>2.1.1</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<scope>runtime</scope>
</dependency>
<!--<dependency>-->
<!--<groupId>org.springframework.cloud</groupId>-->
<!--<artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>-->
<!--<version>2.0.0.RELEASE</version>-->
<!--</dependency>-->
<!--<dependency>-->
<!--<groupId>org.springframework.cloud</groupId>-->
<!--<artifactId>spring-cloud-openfeign</artifactId>-->
<!--<version>2.0.1.RELEASE</version>-->
<!--<type>pom</type>-->
<!--<scope>import</scope>-->
<!--</dependency>-->
<!--<dependency>-->
<!--<groupId>org.springframework.cloud</groupId>-->
<!--<artifactId>spring-cloud-starter-openfeign</artifactId>-->
<!--</dependency>-->
<!--数据库连接池-->
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>druid-spring-boot-starter</artifactId>
<version>1.1.10</version>
</dependency>
<!--缓存-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-cache</artifactId>
</dependency>
<dependency>
<groupId>net.sf.ehcache</groupId>
<artifactId>ehcache</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
<exclusions>
<exclusion>
<groupId>org.junit.vintage</groupId>
<artifactId>junit-vintage-engine</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>com.taobao</groupId>
<artifactId>taobao-sdk</artifactId>
<version>2.3</version>
<scope>system</scope>
<systemPath>${project.basedir}/src/main/resources/lib/taobao-sdk-java-20191021.jar</systemPath>
</dependency>
<!-- 引入swagger包 -->
<dependency>
<groupId>io.springfox</groupId>
<artifactId>springfox-swagger2</artifactId>
<version>2.4.0</version>
</dependency>
<dependency>
<groupId>io.springfox</groupId>
<artifactId>springfox-swagger-ui</artifactId>
<version>2.4.0</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>
<includeSystemScope>true</includeSystemScope>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<configuration>
<skipTests>true</skipTests>
</configuration>
</plugin>
<plugin>
<groupId>org.mybatis.generator</groupId>
<artifactId>mybatis-generator-maven-plugin</artifactId>
<version>1.3.5</version>
<executions>
<execution>
<id>Generate MyBatis Artifacts</id>
<goals>
<goal>generate</goal>
</goals>
<phase>deploy</phase>
</execution>
</executions>
<configuration>
<configurationFile>src/main/resources/generatorConfig.xml</configurationFile>
</configuration>
</plugin>
</plugins>
</build>
</project>
2.application.properties
#============== kafka ===================
# 指定kafka server的地址,集群配多个,中间,逗号隔开
spring.kafka.bootstrap-servers=ip:9092
#=============== provider =======================
# 写入失败时,重试次数。当leader节点失效,一个repli节点会替代成为leader节点,此时可能出现写入失败,
# 当retris为0时,produce不会重复。retirs重发,此时repli节点完全成为leader节点,不会产生消息丢失。
spring.kafka.producer.retries=1
# 每次批量发送消息的数量,produce积累到一定数据,一次发送
spring.kafka.producer.batch-size=16384
# produce积累数据一次发送,缓存大小达到buffer.memory就发送数据
spring.kafka.producer.buffer-memory=33554432
#procedure要求leader在考虑完成请求之前收到的确认数,用于控制发送记录在服务端的持久化,其值可以为如下:
#acks = 0 如果设置为零,则生产者将不会等待来自服务器的任何确认,该记录将立即添加到套接字缓冲区并视为已发送。在这种情况下,无法保证服务器已收到记录,并且重试配置将不会生效(因为客户端通常不会知道任何故障),为每条记录返回的偏移量始终设置为-1。
#acks = 1 这意味着leader会将记录写入其本地日志,但无需等待所有副本服务器的完全确认即可做出回应,在这种情况下,如果leader在确认记录后立即失败,但在将数据复制到所有的副本服务器之前,则记录将会丢失。
#acks = all 这意味着leader将等待完整的同步副本集以确认记录,这保证了只要至少一个同步副本服务器仍然存活,记录就不会丢失,这是最强有力的保证,这相当于acks = -1的设置。
#可以设置的值为:all, -1, 0, 1
spring.kafka.producer.acks=1
# 指定消息key和消息体的编解码方式
spring.kafka.producer.key-serializer=org.apache.kafka.common.serialization.StringSerializer
spring.kafka.producer.value-serializer=org.apache.kafka.common.serialization.StringSerializer
#=============== consumer =======================
# 指定默认消费者group id --> 由于在kafka中,同一组中的consumer不会读取到同一个消息,依靠groud.id设置组名
spring.kafka.consumer.group-id=testGroup
# smallest和largest才有效,如果smallest重新0开始读取,如果是largest从logfile的offset读取。一般情况下我们都是设置smallest
spring.kafka.consumer.auto-offset-reset=latest
# enable.auto.commit:true --> 设置自动提交offset
spring.kafka.consumer.enable-auto-commit=true
#如果'enable.auto.commit'为true,则消费者偏移自动提交给Kafka的频率(以毫秒为单位),默认值为5000。
spring.kafka.consumer.auto-commit-interval=100
# 指定消息key和消息体的编解码方式
spring.kafka.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.consumer.value-deserializer=org.apache.kafka.common.serialization.StringDeserializer
3.生产者
package mis.kafka.producer;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
@RestController
public class ProducerTest {
@Autowired
private KafkaTemplate kafkaTemplate;
@RequestMapping(value = "/kafkaTestProducer",method = RequestMethod.GET)
public boolean send(@RequestParam String message){
kafkaTemplate.send("test",message);
return true;
}
@RequestMapping("/hello")
public String hello(){
return "hello";
}
}
4.消费者
package mis.kafka.consumer;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Service;
import java.util.Date;
@Service
public class KafkaConsumerTest {
@KafkaListener(topics ="test" , groupId = "testGroup" )
public void receiveTestTopicMessage(String message){
System.out.println("=========="+new Date()+"message:"+message);
}
}
5.测试
大数据通用的序列化器——Apache Avro
1. 简介
Apache Avro(以下简称 Avro)是一种与编程语言无关的序列化格式。Doug Cutting 创建了这个项目,目的是提供一种共享数据文件的方式。
Avro 数据通过与语言无关的 schema 来定义。schema 通过 JSON 来描述,数据被序列化成二进制文件或 JSON 文件,不过一般会使用二进制文件。Avro 在读写文件时需要用到 schema,schema 一般会被内嵌在数据文件里。
Avro 有一个很有意思的特性是,当负责写消息的应用程序使用了新的 schema,负责读消息的应用程序可以继续处理消息而无需做任何改动。
到写本篇博客的时间为止,avro的最新版本为1.8.2
2. 创建 maven 工程
(1) 加入 avro 依赖
<dependency>
<groupId>org.apache.avro</groupId>
<artifactId>avro</artifactId>
<version>1.8.2</version>
</dependency>
(2) 加入 avro 插件的依赖
<plugin>
<groupId>org.apache.avro</groupId>
<artifactId>avro-maven-plugin</artifactId>
<version>1.8.2</version>
<executions>
<execution>
<phase>generate-sources</phase>
<goals>
<goal>schema</goal>
</goals>
<configuration>
<sourceDirectory>${project.basedir}/src/main/avro/</sourceDirectory>
<outputDirectory>${project.basedir}/src/main/java/</outputDirectory>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.6</source>
<target>1.6</target>
</configuration>
</plugin>
以上是官网列出的 avro 插件的依赖,其中提供了 maven 的编译插件,该插件使用JDK1.6版本来编译代码,我在这里改为了1.8,因为我的JDK版本是1.8
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<pluginManagement>
<plugins>
<!--This plugin's configuration is used to store Eclipse m2e settings only. It has no influence on the Maven build itself.-->
<plugin>
<groupId>org.eclipse.m2e</groupId>
<artifactId>lifecycle-mapping</artifactId>
<version>1.0.0</version>
<configuration>
<lifecycleMappingMetadata>
<pluginExecutions>
<pluginExecution>
<pluginExecutionFilter>
<groupId>org.apache.avro</groupId>
<artifactId>avro-maven-plugin</artifactId>
<versionRange>[1.8.2,)</versionRange>
<goals>
<goal>schema</goal>
</goals>
</pluginExecutionFilter>
<action>
<ignore></ignore>
</action>
</pluginExecution>
</pluginExecutions>
</lifecycleMappingMetadata>
</configuration>
</plugin>
</plugins>
</pluginManagement>
3. 使用 avro
(1) 通过生成代码的方式使用 avro
<1> 定义 schema 文件
注意在 avro 插件的依赖中定义的两个路径
<configuration>
<sourceDirectory>${project.basedir}/src/main/avro/</sourceDirectory>
<outputDirectory>${project.basedir}/src/main/java/</outputDirectory>
</configuration>
该配置的意思是,根据/src/main/avro/下的schema文件,生成对应的类文件到/src/main/java/下,所以我们先创建一个资源文件夹/src/main/avro
然后再在该资源文件夹下创建 schema 文件,这里定义一个简单的schema文件user.avsc
,注意,后缀一定是avsc
,其中的内容如下:
{
"namespace": "com.avro.example",
"type": "record",
"name": "User",
"fields": [
{"name": "name", "type": "string"},
{"name": "favorite_number", "type": ["int", "null"]},
{"name": "favorite_color", "type": ["string", "null"]}
]
}
- namespace:定义了根据 schema 文件生成的类的包名
- type:固定写法
- name:生成的类的名称
- fields:定义了生成的类中的属性的名称和类型,其中
"type": ["int", "null"]
的意思是,favorite_number 这个属性是int类型,但可以为null
avro 支持的类型有null、boolean、int、long、float、double、bytes、string这些基本类型和record、enum、array、map、union、fixed这些复杂类型,关于复杂类型可以参考官网的说明:/docs/1.11.1/specification/_print/,本文只是一个入门
<2> 生成 User 类
在编译程序之前,项目中是没有com.avro.example.User这个类的:
在运行 maven build compile 后,就生成这个类:
<3> 序列化
package com.avro.serializer;
import java.io.File;
import java.io.IOException;
import org.apache.avro.file.DataFileWriter;
import org.apache.avro.io.DatumWriter;
import org.apache.avro.specific.SpecificDatumWriter;
import com.avro.example.User;
/**
* @Title AvroSerializerTest.java
* @Description 使用 avro 对 com.avro.example.User 类的对象进行序列化
* @Author YangYunhe
* @Date 2018-06-21 15:42:02
*/
public class AvroSerializerTest {
public static void main(String[] args) throws IOException {
User user1 = new User();
user1.setName("Tom");
user1.setFavoriteNumber(7);
User user2 = new User("Jack", 15, "red");
User user3 = User.newBuilder()
.setName("Harry")
.setFavoriteNumber(1)
.setFavoriteColor("green")
.build();
DatumWriter<User> userDatumWriter = new SpecificDatumWriter<>(User.class);
DataFileWriter<User> dataFileWriter = new DataFileWriter<User>(userDatumWriter);
dataFileWriter.create(user1.getSchema(), new File("users.avro"));
dataFileWriter.append(user1);
dataFileWriter.append(user2);
dataFileWriter.append(user3);
dataFileWriter.close();
}
}
运行以上程序,就会把这3个User对象经过 avro 序列化后写到了项目根目录下的"user.avro"文件中:
<4> 反序列化
package com.avro.deserializer;
import java.io.File;
import java.io.IOException;
import org.apache.avro.file.DataFileReader;
import org.apache.avro.io.DatumReader;
import org.apache.avro.specific.SpecificDatumReader;
import com.avro.example.User;
/**
* @Title AvroDeSerializerTest.java
* @Description 解析 avro 序列化后的对象
* @Author YangYunhe
* @Date 2018-06-21 15:58:10
*/
public class AvroDeSerializerTest {
public static void main(String[] args) throws IOException {
DatumReader<User> userDatumReader = new SpecificDatumReader<User>(User.class);
DataFileReader<User> dataFileReader = new DataFileReader<User>(new File("users.avro"), userDatumReader);
User user = null;
while (dataFileReader.hasNext()) {
user = dataFileReader.next(user);
System.out.println(user);
}
}
}
程序运行结果为:
{"name": "Tom", "favorite_number": 7, "favorite_color": null}
{"name": "Jack", "favorite_number": 15, "favorite_color": "red"}
{"name": "Harry", "favorite_number": 1, "favorite_color": "green"}
(2) 通过不生成代码的方式使用 avro
<1> 序列化
package com.avro.serializer;
import java.io.File;
import java.io.IOException;
import org.apache.avro.Schema;
import org.apache.avro.file.DataFileWriter;
import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericDatumWriter;
import org.apache.avro.generic.GenericRecord;
import org.apache.avro.io.DatumWriter;
import com.avro.deserializer.AvroDeSerializerWithoutCodeGenerationTest;
/**
* @Title AvroSerializerWithoutCodeGenerationTest.java
* @Description 通过不生成代码的方式使用avro序列化User对象
* @Author YangYunhe
* @Date 2018-06-21 16:04:13
*/
public class AvroSerializerWithoutCodeGenerationTest {
public static void main(String[] args) throws IOException {
String avscFilePath =
AvroDeSerializerWithoutCodeGenerationTest.class.getClassLoader().getResource("user.avsc").getPath();
Schema schema = new Schema.Parser().parse(new File(avscFilePath));
GenericRecord user1 = new GenericData.Record(schema);
user1.put("name", "Tony");
user1.put("favorite_number", 18);
GenericRecord user2 = new GenericData.Record(schema);
user2.put("name", "Ben");
user2.put("favorite_number", 3);
user2.put("favorite_color", "red");
File file = new File("user2.avro");
DatumWriter<GenericRecord> datumWriter = new GenericDatumWriter<GenericRecord>(schema);
DataFileWriter<GenericRecord> dataFileWriter = new DataFileWriter<GenericRecord>(datumWriter);
dataFileWriter.create(schema, file);
dataFileWriter.append(user1);
dataFileWriter.append(user2);
dataFileWriter.close();
}
}
<2> 反序列化
package com.avro.deserializer;
import java.io.File;
import java.io.IOException;
import org.apache.avro.Schema;
import org.apache.avro.file.DataFileReader;
import org.apache.avro.generic.GenericDatumReader;
import org.apache.avro.generic.GenericRecord;
import org.apache.avro.io.DatumReader;
/**
* @Title AvroDeSerializerWithoutCodeGenerationTest.java
* @Description 通过不生成代码的方式使用avro反序列化
* @Author YangYunhe
* @Date 2018-06-21 16:07:44
*/
public class AvroDeSerializerWithoutCodeGenerationTest {
public static void main(String[] args) throws IOException {
String avscFilePath =
AvroDeSerializerWithoutCodeGenerationTest.class.getClassLoader().getResource("user.avsc").getPath();
Schema schema = new Schema.Parser().parse(new File(avscFilePath));
File file = new File("user2.avro");
DatumReader<GenericRecord> datumReader = new GenericDatumReader<GenericRecord>(schema);
DataFileReader<GenericRecord> dataFileReader = new DataFileReader<GenericRecord>(file, datumReader);
GenericRecord user = null;
while (dataFileReader.hasNext()) {
user = dataFileReader.next(user);
System.out.println(user);
}
}
}
程序运行结果:
{"name": "Tony", "favorite_number": 18, "favorite_color": null}
{"name": "Ben", "favorite_number": 3, "favorite_color": "red"}
1.添加maven依赖
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
<version>1.3.9.RELEASE</version>
</dependency> <dependency>
<groupId>org.apache.avro</groupId>
<artifactId>avro</artifactId>
<version>1.9.0</version>
</dependency> <dependency>
<groupId>io.confluent</groupId>
<artifactId>kafka-avro-serializer</artifactId>
<version>5.2.1</version>
</dependency>2.添加mavenplugin
<plugin>
<groupId>org.apache.avro</groupId>
<artifactId>avro-maven-plugin</artifactId>
<version>1.9.0</version>
<executions>
<execution>
<phase>generate-sources</phase>
<goals>
<goal>schema</goal>
</goals>
<configuration>
<sourceDirectory>avsc问价路径</sourceDirectory>
<outputDirectory>avro代码生成路径</outputDirectory>
</configuration>
</execution>
</executions>
</plugin> 3.kafka配置
spring:
kafka:
bootstrap-servers: xxx
producer:
key-serializer: io.confluent.kafka.serializers.KafkaAvroSerializer
value-serializer: io.confluent.kafka.serializers.KafkaAvroSerializer
consumer:
group-id: test
key-deserializer: io.confluent.kafka.serializers.KafkaAvroDeserializer
value-deserializer: io.confluent.kafka.serializers.KafkaAvroDeserializer
properties:
schema.registry.url: xxx
security.protocol: SASL_PLAINTEXT
sasl:
mechanism: PLAIN
jaas.config: org.apache.kafka.common.security.plain.PlainLoginModule required username="" password="";
template:
default-topic: xxx4.kafka producer
@Component
public class Producer {
@Autowired
private KafkaTemplate kafkaTemplate; public void send(AvroRecord record) {
if (Objects.isNull(record)) {
return;
}
LOGGER.info(record.toString());
kafkaTemplate.sendDefault("key", record);
}
}5.kafka consumer
@Component
public class Consumer {
@KafkaListener(topics = "xxx")
public void consume(ConsumerRecord<String, AvroRecord> message)
{
LOGGER.info("receive message:");
LOGGER.info("topic:" + message.topic());
LOGGER.info("key:" + message.key());
LOGGER.info("value:" + message.value());
}
}