字符串格式化

Python的字符串格式化有两种方式: 百分号方式、format方式

百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存。[PEP-3101]

This PEP proposes a new system for built-in string formatting operations, intended as a replacement for the existing '%' string formatting operator.

1、百分号方式

%[(name)][flags][width].[precision]typecode

  • (name)      可选,用于选择指定的key
  • flags          可选,可供选择的值有:
  • +       右对齐;正数前加正好,负数前加负号;
  • -        左对齐;正数前无符号,负数前加负号;
  • 空格    右对齐;正数前加空格,负数前加负号;
  • 0        右对齐;正数前无符号,负数前加负号;用0填充空白处
  • width         可选,占有宽度
  • .precision   可选,小数点后保留的位数
  • typecode    必选
  • s,获取传入对象的__str__方法的返回值,并将其格式化到指定位置
  • r,获取传入对象的__repr__方法的返回值,并将其格式化到指定位置
  • c,整数:将数字转换成其unicode对应的值,10进制范围为 0 <= i <= 1114111(py27则只支持0-255);字符:将字符添加到指定位置
  • o,将整数转换成 八  进制表示,并将其格式化到指定位置
  • x,将整数转换成十六进制表示,并将其格式化到指定位置
  • d,将整数、浮点数转换成 十 进制表示,并将其格式化到指定位置
  • e,将整数、浮点数转换成科学计数法,并将其格式化到指定位置(小写e)
  • E,将整数、浮点数转换成科学计数法,并将其格式化到指定位置(大写E)
  • f, 将整数、浮点数转换成浮点数表示,并将其格式化到指定位置(默认保留小数点后6位)
  • F,同上
  • g,自动调整将整数、浮点数转换成 浮点型或科学计数法表示(超过6位数用科学计数法),并将其格式化到指定位置(如果是科学计数则是e;)
  • G,自动调整将整数、浮点数转换成 浮点型或科学计数法表示(超过6位数用科学计数法),并将其格式化到指定位置(如果是科学计数则是E;)
  • %,当字符串中存在格式化标志时,需要用 %%表示一个百分号

注:Python中百分号格式化是不存在自动将整数转换成二进制表示的方式

常用格式化:

tpl = "i am %s" % "alex"
 
tpl = "i am %s age %d" % ("alex", 18)
 
tpl = "i am %(name)s age %(age)d" % {"name": "alex", "age": 18}
 
tpl = "percent %.2f" % 99.97623
 
tpl = "i am %(pp).2f" % {"pp": 123.425556, }
 
tpl = "i am %.2f %%" % {"pp": 123.425556, }

2、Format方式

[[fill]align][sign][#][0][width][,][.precision][type]

  • fill           【可选】空白处填充的字符
  • align        【可选】对齐方式(需配合width使用)
  • <,内容左对齐
  • >,内容右对齐(默认)
  • =,内容右对齐,将符号放置在填充字符的左侧,且只对数字类型有效。 即使:符号+填充物+数字
  • ^,内容居中
  • sign         【可选】有无符号数字
  • +,正号加正,负号加负;
  •  -,正号不变,负号加负;
  • 空格 ,正号空格,负号加负;
  • #            【可选】对于二进制、八进制、十六进制,如果加上#,会显示 0b/0o/0x,否则不显示
  • ,            【可选】为数字添加分隔符,如:1,000,000
  • width       【可选】格式化位所占宽度
  • .precision 【可选】小数位保留精度
  • type         【可选】格式化类型
  • 传入” 字符串类型 “的参数
  • s,格式化字符串类型数据
  • 空白,未指定类型,则默认是None,同s
  • 传入“ 整数类型 ”的参数
  • b,将10进制整数自动转换成2进制表示然后格式化
  • c,将10进制整数自动转换为其对应的unicode字符
  • d,十进制整数
  • o,将10进制整数自动转换成8进制表示然后格式化;
  • x,将10进制整数自动转换成16进制表示然后格式化(小写x)
  • X,将10进制整数自动转换成16进制表示然后格式化(大写X)
  • 传入“ 浮点型或小数类型 ”的参数
  • e, 转换为科学计数法(小写e)表示,然后格式化;
  • E, 转换为科学计数法(大写E)表示,然后格式化;
  • f , 转换为浮点型(默认小数点后保留6位)表示,然后格式化;
  • F, 转换为浮点型(默认小数点后保留6位)表示,然后格式化;
  • g, 自动在e和f中切换
  • G, 自动在E和F中切换
  • %,显示百分比(默认显示小数点后6位)

 常用格式化:

tpl = "i am {}, age {}, {}".format("seven", 18, 'alex')
  
tpl = "i am {}, age {}, {}".format(*["seven", 18, 'alex'])
  
tpl = "i am {0}, age {1}, really {0}".format("seven", 18)
  
tpl = "i am {0}, age {1}, really {0}".format(*["seven", 18])
  
tpl = "i am {name}, age {age}, really {name}".format(name="seven", age=18)
  
tpl = "i am {name}, age {age}, really {name}".format(**{"name": "seven", "age": 18})
  
tpl = "i am {0[0]}, age {0[1]}, really {0[2]}".format([1, 2, 3], [11, 22, 33])
  
tpl = "i am {:s}, age {:d}, money {:f}".format("seven", 18, 88888.1)
  
tpl = "i am {:s}, age {:d}".format(*["seven", 18])
  
tpl = "i am {name:s}, age {age:d}".format(name="seven", age=18)
  
tpl = "i am {name:s}, age {age:d}".format(**{"name": "seven", "age": 18})
 
tpl = "numbers: {:b},{:o},{:d},{:x},{:X}, {:%}".format(15, 15, 15, 15, 15, 15.87623, 2)
 
tpl = "numbers: {:b},{:o},{:d},{:x},{:X}, {:%}".format(15, 15, 15, 15, 15, 15.87623, 2)
 
tpl = "numbers: {0:b},{0:o},{0:d},{0:x},{0:X}, {0:%}".format(15)
 
tpl = "numbers: {num:b},{num:o},{num:d},{num:x},{num:X}, {num:%}".format(num=15)

更多格式化操作:https://docs.python.org/3/library/string.html

迭代器和生成器

1、迭代器

迭代器是访问集合元素的一种方式。迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退。另外,迭代器的一大优点是不要求事先准备好整个迭代过程中所有的元素。迭代器仅仅在迭代到某个元素时才计算该元素,而在这之前或之后,元素可以不存在或者被销毁。这个特点使得它特别适合用于遍历一些巨大的或是无限的集合,比如几个G的文件

特点:

  1. 访问者不需要关心迭代器内部的结构,仅需通过next()方法不断去取下一个内容
  2. 不能随机访问集合中的某个值 ,只能从头到尾依次访问
  3. 访问到一半时不能往回退
  4. 便于循环比较大的数据集合,节省内存
>>> a = iter([1,2,3,4,5])
>>> a
<list_iterator object at 0x101402630>
>>> a.__next__()
1
>>> a.__next__()
2
>>> a.__next__()
3
>>> a.__next__()
4
>>> a.__next__()
5
>>> a.__next__()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

2、生成器

一个函数调用时返回一个迭代器,那这个函数就叫做生成器(generator);如果函数中包含yield语法,那这个函数就会变成生成器;

def func():
    yield 1
    yield 2
    yield 3
    yield 4

上述代码中:func是函数称为生成器,当执行此函数func()时会得到一个迭代器。

>>> temp = func()
>>> temp.__next__()
1
>>> temp.__next__()
2
>>> temp.__next__()
3
>>> temp.__next__()
4
>>> temp.__next__()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

3、实例

a、利用生成器自定义range

def nrange(num):
    temp = -1
    while True:
        temp = temp + 1
        if temp >= num:
            return
        else:
            yield temp

b、利用迭代器访问range

...

深浅拷贝

为什么要拷贝?

当进行修改时,想要保留原来的数据和修改后的数据

数字字符串 和 集合 在修改时的差异? (深浅拷贝不同的终极原因)

在修改数据时:
    数字字符串:在内存中新建一份数据
         集合:修改内存中的同一份数据

对于集合,如何保留其修改前和修改后的数据?

在内存中拷贝一份

对于集合,如何拷贝其n层元素同时拷贝?

深拷贝

深浅拷贝

一、数字和字符串

对于 数字 和 字符串 而言,赋值、浅拷贝和深拷贝无意义,因为其永远指向同一个内存地址。

import copy
# ######### 数字、字符串 #########
n1 = 123
# n1 = "i am alex age 10"
print(id(n1))
# ## 赋值 ##
n2 = n1
print(id(n2))
# ## 浅拷贝 ##
n2 = copy.copy(n1)
print(id(n2))
  
# ## 深拷贝 ##
n3 = copy.deepcopy(n1)
print(id(n3))

python以百分号输出 python中百分号怎么打_指定位置

二、其他基本数据类型

对于字典、元祖、列表 而言,进行赋值、浅拷贝和深拷贝时,其内存地址的变化是不同的。

1、赋值

赋值,只是创建一个变量,该变量指向原来内存地址,如:

n1 = {"k1": "wu", "k2": 123, "k3": ["alex", 456]}
  
n2 = n1

  

python以百分号输出 python中百分号怎么打_指定位置_02

2、浅拷贝

浅拷贝,在内存中只额外创建第一层数据

import copy
  
n1 = {"k1": "wu", "k2": 123, "k3": ["alex", 456]}
  
n3 = copy.copy(n1)

python以百分号输出 python中百分号怎么打_python以百分号输出_03

3、深拷贝

深拷贝,在内存中将所有的数据重新创建一份(排除最后一层,即:python内部对字符串和数字的优化)

import copy
  
n1 = {"k1": "wu", "k2": 123, "k3": ["alex", 456]}
  
n4 = copy.deepcopy(n1)

python以百分号输出 python中百分号怎么打_进制_04