Spark的部署模式有Standalone、Hadoop YARN、Apache Mesos、Kubernete等。

在我们平时的练习中,可能会用到Standalone模式,但是在实际生产环境中,绝大多数用的还是YARN(Mesos国内基本很少用)。而对于YARN的两种模式,个人认为cluster模式比较多,所以,我们先从cluster模式讲起。

注:本文Spark版本为2.1,新版本会有所改动

之前我也知道在一个Spark程序中,Driver是什么,Executor是什么,在YARN的cluster模式下,Driver是运行在ApplicationMaster中的等等之类的。但是等我工作几个月之后就又忘了,因为在实际开发中,你并不需要知道他是怎么运行的,你只需要指定“--deploy-mode cluster”就行了。但是作为具有极客精神(其实是为了面试)的我,还是准备探究一番。

首先我们提交一个Application时,用的是${SPARK_HOME}/bin目录下的 spark-submit 脚本,后面跟一堆参数,例如:

$ ./bin/spark-submit --class org.apache.spark.examples.SparkPi \
    --master yarn \
    --deploy-mode cluster \
    --driver-memory 4g \
    --executor-memory 2g \
    --executor-cores 1 \
    --queue thequeue \
    examples/jars/spark-examples*.jar \
    10

在查看spark-submit这个脚本时发现,其实他是运行了一个SparkSubmit类,后面的“$@”是将你输入的所有参数传递给此类:

yarn让128个任务同时运行 yarn任务状态_apache

找到SparkSubmit类,直接查看它的main()方法

def main(args: Array[String]): Unit = {
        //将输入参数封装成一个SparkSubmitArguments对象
        val appArgs = new SparkSubmitArguments(args)
        if (appArgs.verbose) { //verbose是打印调试输出的,参数没有指定就是false
            // scalastyle:off println
            printStream.println(appArgs)
            // scalastyle:on println
        }

        appArgs.action match { 
            case SparkSubmitAction.SUBMIT => submit(appArgs)
            case SparkSubmitAction.KILL => kill(appArgs)
            case SparkSubmitAction.REQUEST_STATUS => requestStatus(appArgs)
        }
    }

action参数初始为null,点进去搜索会发现有一行代码:

// Action should be SUBMIT unless otherwise specified
    action = Option(action).getOrElse(SUBMIT)

action=null,则Option(action)为None,所以会将SUBMIT赋值给action,SUBMIT是一个枚举类型。所以上述代码会运行submit方法,点进去。

private def submit(args: SparkSubmitArguments): Unit = {
        
        val (childArgs, childClasspath, sysProps, childMainClass) = prepareSubmitEnvironment(args)

        def doRunMain(): Unit = {
            if (args.proxyUser != null) {
                val proxyUser = UserGroupInformation.createProxyUser(args.proxyUser,
                    UserGroupInformation.getCurrentUser())
                try {
                    proxyUser.doAs(new PrivilegedExceptionAction[Unit]() {
                        override def run(): Unit = {
                            runMain(childArgs, childClasspath, sysProps, childMainClass, args.verbose)
                        }
                    })
                } catch {
                    ...
                }
            } else {
                runMain(childArgs, childClasspath, sysProps, childMainClass, args.verbose)
            }
        }

submit方法的第一行调用了prepareSubmitEnvironment方法,根据这个方法的方法名和注释就可以知道,他是确定了提交模式,准备好提交环境。下面的doRunMain函数中,proxyUser参数在上面SparkSubmitArguments对象中初始值就为null,所以if不会进去,直接到下面调用了runMain方法,点进去。

private def runMain(
                           childArgs: Seq[String],
                           childClasspath: Seq[String],
                           sysProps: Map[String, String],
                           childMainClass: String,
                           verbose: Boolean): Unit = {
        // scalastyle:off println
        if (verbose) {
            printStream.println(s"Main class:\n$childMainClass")
            printStream.println(s"Arguments:\n${childArgs.mkString("\n")}")
            printStream.println(s"System properties:\n${sysProps.mkString("\n")}")
            printStream.println(s"Classpath elements:\n${childClasspath.mkString("\n")}")
            printStream.println("\n")
        }
        // scalastyle:on println

        val loader =
            if (sysProps.getOrElse("spark.driver.userClassPathFirst", "false").toBoolean) {
                new ChildFirstURLClassLoader(new Array[URL](0),
                    Thread.currentThread.getContextClassLoader)
            } else {
                new MutableURLClassLoader(new Array[URL](0),
                    Thread.currentThread.getContextClassLoader)
            }
        Thread.currentThread.setContextClassLoader(loader)

        for (jar <- childClasspath) {
            addJarToClasspath(jar, loader)
        }

        for ((key, value) <- sysProps) {
            System.setProperty(key, value)
        }

        var mainClass: Class[_] = null

        try {// ①使用反射的方式加载 childMainClass
            mainClass = Utils.classForName(childMainClass)
        } catch {...}

        // SPARK-4170
        if (classOf[scala.App].isAssignableFrom(mainClass)) {
            printWarning("Subclasses of scala.App may not work correctly. Use a main() method instead.")
        }
        // ②反射出来 Client 的 main 方法
        val mainMethod = mainClass.getMethod("main", new Array[String](0).getClass)
        if (!Modifier.isStatic(mainMethod.getModifiers)) {
            throw new IllegalStateException("The main method in the given main class must be static")
        }

        @tailrec
        def findCause(t: Throwable): Throwable = t match {
            case e: UndeclaredThrowableException =>
                if (e.getCause() != null) findCause(e.getCause()) else e
            case e: InvocationTargetException =>
                if (e.getCause() != null) findCause(e.getCause()) else e
            case e: Throwable =>
                e
        }

        try {
            // ③调用 main 方法.
            mainMethod.invoke(null, childArgs.toArray)
        } catch {
           ...
        }
    }

runMain方法中最重要的就是注释①,使用反射的方式加载 childMainClass。回过头去看childMainClass究竟是什么,要找到前面的prepareSubmitEnvironment这个准备环境的方法。此方法代码几百行,但都是验证之类的,直接找到第603行:

if (isYarnCluster) {
            // In yarn-cluster mode, use yarn.Client as a wrapper around the user class
            // 在 yarn 集群模式下, 使用yarn.Client来对封装一下 user class
            childMainClass = "org.apache.spark.deploy.yarn.Client"
            if (args.isPython) {
                childArgs += ("--primary-py-file", args.primaryResource)
                childArgs += ("--class", "org.apache.spark.deploy.PythonRunner")
            } else if (args.isR) {
                val mainFile = new Path(args.primaryResource).getName
                childArgs += ("--primary-r-file", mainFile)
                childArgs += ("--class", "org.apache.spark.deploy.RRunner")
            } else {
                if (args.primaryResource != SparkLauncher.NO_RESOURCE) {
                    childArgs += ("--jar", args.primaryResource)
                }
                childArgs += ("--class", args.mainClass)
            }
            if (args.childArgs != null) {
                args.childArgs.foreach { arg => childArgs += ("--arg", arg) }
            }
        }

以上可以清晰的看出,childMainClass其实就是“org.apache.spark.deploy.yarn.Client”这个类。找到这个类之后,我们就直接查看它的main()方法。

Client类的main()方法在1231行,在main()方法中最重要的就最后一行:

val args = new ClientArguments(argStrings)//对参数进一步封装
new Client(args, sparkConf).run()

注意,这里是调用run()方法,并不是启动一个线程!点开run()方法,发现直接调用了submitApplication()方法,字面意思就是提交Application。点开此方法

def submitApplication(): ApplicationId = {
        var appId: ApplicationId = null
        try {
            launcherBackend.connect()//目测是连接yarn的
            // Setup the credentials before doing anything else,
            // so we have don't have issues at any point.
            setupCredentials()
            
            yarnClient.init(yarnConf)// 初始化 yarn 客户端
            
            yarnClient.start()// 启动 yarn 客户端

            logInfo("Requesting a new application from cluster with %d NodeManagers"
                .format(yarnClient.getYarnClusterMetrics.getNumNodeManagers))

            // Get a new application from our RM
            // 从 RM 创建一个应用程序
            val newApp = yarnClient.createApplication()
            val newAppResponse = newApp.getNewApplicationResponse()
            // 获取到 applicationID
            appId = newAppResponse.getApplicationId()
            reportLauncherState(SparkAppHandle.State.SUBMITTED)
            launcherBackend.setAppId(appId.toString)

            new CallerContext("CLIENT", Option(appId.toString)).setCurrentContext()

            // Verify whether the cluster has enough resources for our AM
            //验证集群是否有足够的资源用于我们的AM
            verifyClusterResources(newAppResponse)

            // Set up the appropriate contexts to launch our AM
            // 设置正确的上下文对象来启动 ApplicationMaster
            val containerContext = createContainerLaunchContext(newAppResponse)
            // 创建应用程序提交任务上下文
            val appContext = createApplicationSubmissionContext(newApp, containerContext)

            // Finally, submit and monitor the application
            logInfo(s"Submitting application $appId to ResourceManager")
            // 提交应用给 ResourceManager
            yarnClient.submitApplication(appContext)
            appId
        } catch {
            ...
        }
    }

在此可以看到一个createContainer...方法,字面意思就是创建Container容器,点进去

/**
      * Set up a ContainerLaunchContext to launch our ApplicationMaster container.
      * This sets up the launch environment, java options, and the command for launching the AM.
      */
logInfo("Setting up container launch context for our AM")

 从方法注释和打印的日志信息就知道,这里是为启动ApplicationMaster准备Container资源,由于方法体太长我就不粘贴了。方法体内部其实也是定义各种资源,直到看到如下代码:

val amClass =
            if (isClusterMode) {
                Utils.classForName("org.apache.spark.deploy.yarn.ApplicationMaster").getName
            } else {
                Utils.classForName("org.apache.spark.deploy.yarn.ExecutorLauncher").getName
            }

ApplicationMaster。

然后主要就是向ResourceManager申请在NodeManager上创建ApplicationMaster,接下来的事情就与Client无关了,所以我们直接奔向ApplicationMaster类

yarn让128个任务同时运行 yarn任务状态_yarn让128个任务同时运行_02

此类有main()方法,Ctrl+F12直接找

def main(args: Array[String]): Unit = {
        SignalUtils.registerLogger(log)
        // 对传来的参数做封装
        val amArgs: ApplicationMasterArguments = new ApplicationMasterArguments(args)

        // Load the properties file with the Spark configuration and set entries as system properties,
        // so that user code run inside the AM also has access to them.
        // Note: we must do this before SparkHadoopUtil instantiated
        if (amArgs.propertiesFile != null) {
            Utils.getPropertiesFromFile(amArgs.propertiesFile).foreach { case (k, v) =>
                sys.props(k) = v
            }
        }
        SparkHadoopUtil.get.runAsSparkUser { () =>
            master = new ApplicationMaster(amArgs, new YarnRMClient)
            System.exit(master.run())
        }
    }

方法最后两行先构建了一个ApplicationMaster实例,然后调用其run()方法,最后程序退出。

点开run()方法,

if (isClusterMode) {
    runDriver(securityMgr)
} else {
    runExecutorLauncher(securityMgr)
}

发现最终调用了runDriver()方法,继续点开

private def runDriver(securityMgr: SecurityManager): Unit = {
        addAmIpFilter()
        userClassThread = startUserApplication()

        // This a bit hacky, but we need to wait until the spark.driver.port property has
        // been set by the Thread executing the user class.
        logInfo("Waiting for spark context initialization...")
        val totalWaitTime = sparkConf.get(AM_MAX_WAIT_TIME)
        try {
            val sc = ThreadUtils.awaitResult(sparkContextPromise.future,
                Duration(totalWaitTime, TimeUnit.MILLISECONDS))
            if (sc != null) {
                rpcEnv = sc.env.rpcEnv
                val driverRef = runAMEndpoint(
                    sc.getConf.get("spark.driver.host"),
                    sc.getConf.get("spark.driver.port"),
                    isClusterMode = true)
                // 注册 ApplicationMaster , 其实就是请求资源
                registerAM(sc.getConf, rpcEnv, driverRef, sc.ui.map(_.appUIAddress).getOrElse(""),
                    securityMgr)
            } else {
                // Sanity check; should never happen in normal operation, since sc should only be null
                // if the user app did not create a SparkContext.
                if (!finished) {
                    throw new IllegalStateException("SparkContext is null but app is still running!")
                }
            }
            // 线程 join: 把userClassThread线程执行完毕之后再继续执行当前线程.
            userClassThread.join()
        } catch {
            ...
        }
    }

重点在第2行,将startUserApplication()方法的返回值赋值给了userClassThread。点开startUserApplication()方法一探究竟:

private def startUserApplication(): Thread = {
        logInfo("Starting the user application in a separate Thread")
        val classpath = Client.getUserClasspath(sparkConf)
        val urls = classpath.map { entry =>
            new URL("file:" + new File(entry.getPath()).getAbsolutePath())
        }
        val userClassLoader =
            if (Client.isUserClassPathFirst(sparkConf, isDriver = true)) {
                new ChildFirstURLClassLoader(urls, Utils.getContextOrSparkClassLoader)
            } else {
                new MutableURLClassLoader(urls, Utils.getContextOrSparkClassLoader)
            }
        //获取用户程序的main方法
        val mainMethod = userClassLoader.loadClass(args.userClass)
            .getMethod("main", classOf[Array[String]])

        val userThread = new Thread {
            override def run() {
                try {
                    //启动一个线程调用main方法
                    mainMethod.invoke(null, userArgs.toArray)
                    finish(FinalApplicationStatus.SUCCEEDED, ApplicationMaster.EXIT_SUCCESS)
                    logDebug("Done running users class")
                } catch {
                    ...
                } finally {
                    sparkContextPromise.trySuccess(null)
                }
            }
        }
        userThread.setContextClassLoader(userClassLoader)
        userThread.setName("Driver")//将线程起名为Driver
        userThread.start()
        userThread
    }

由以上可以看出,先试用反射获取到--class指定的类,也就是你提交的程序,然后启动一个线程调用我们程序的main()方法,将线程命名为“Driver”后开始执行并返回。

到此我们终于知道,在YARN的cluster模式下,是由ApplicationMaster创建了一个名叫Driver线程,也就是我们常说的Driver。

后退到runDriver()方法,在请求资源后,写了这样一句代码:userClassThread.join()。可以看到,在run()方法结束前,会将用户(Driver)线程插队到ApplicationMaster的main线程之前,只有用户线程运行完毕,ApplicationMaster才可以继续执行然后System.exit()

到此,剩下的事情就交给YARN来调度执行了。

下面是画的一张草图供大家参考,并不完善:

yarn让128个任务同时运行 yarn任务状态_spark_03

 接下来就要看看初始化SparkContext做了什么事情了,后续更新。