今天我来给你讲讲Python的可视化技术。 如果你想要用Python进行数据分析,就需要在项目初期开始进行探索性的数据分析,这样方便你对数据有一定的了解。其中最直观的就是采用数据可视化技术,这样,数据不仅一目了然,而且更容易被解读。同样在数据分析得到结果之后,我们还需要用到可视化技术,把最终的结果呈现出来。
可视化视图都有哪些? 按照数据之间的关系,我们可以把可视化视图划分为4类,它们分别是比较、联系、构成和分布。
我来简单介绍下这四种关系的特点:
比较:比较数据间各类别的关系,或者是它们随着时间的变化趋势,比如折线图;
联系:查看两个或两个以上变量之间的关系,比如散点图;
构成:每个部分占整体的百分比,或者是随着时间的百分比变化,比如饼图;
分布:关注单个变量,或者多个变量的分布情况,比如直方图。 同样,按照变量的个数,我们可以把可视化视图划分为单变量分析和多变量分析。
单变量分析指的是一次只关注一个变量。比如我们只关注“身高”这个变量,来看身高的取值分布,而暂时忽略其他变量。
多变量分析可以让你在一张图上可以查看两个以上变量的关系。比如“身高”和“年龄”,你可以理解是同一个人的两个参数,这样在同一张图中可以看到每个人的“身高”和“年龄”的取值,从而分析出来这两个变量之间是否存在某种联系。
可视化的视图可以说是分门别类,多种多样,今天我主要介绍常用的10种视图,包括了散点图、折线图、直方图、条形图、箱线图、饼图、热力图、蜘蛛图、二元变量分布、成对关系。
散点图
散点图的英文叫做scatter plot,它将两个变量的值显示在二维坐标中,非常适合展示两个变量之间的关系。当然,除了二维的散点图,我们还有三维的散点图。
我在上一讲中给你简单介绍了下Matplotlib这个工具,在Matplotlib中,我们经常会用到pyplot这个工具包,它包括了很多绘图函数,类似Matlab的绘图框架。在使用前你需要进行引用:
import matplotlib.pyplot as plt 在工具包引用后,画散点图,需要使用plt.scatter(x, y, marker=None)函数。x、y 是坐标,marker代表了标记的符号。比如“x”、“>”或者“o”。选择不同的marker,呈现出来的符号样式也会不同,你可以自己试一下。
除了Matplotlib外,你也可以使用Seaborn进行散点图的绘制。在使用Seaborn前,也需要进行包引用:
import seaborn as sns 在引用seaborn工具包之后,就可以使用seaborn工具包的函数了。如果想要做散点图,可以直接使用sns.jointplot(x, y, data=None, kind=‘scatter’)函数。其中x、y是data中的下标。data就是我们要传入的数据,一般是DataFrame类型。kind这类我们取scatter,代表散点的意思。当然kind还可以取其他值,这个我在后面的视图中会讲到,不同的kind代表不同的视图绘制方式
扩展阅读: 数据可视化:掌握数据领域的万金油技能
折线图
折线图可以用来表示数据随着时间变化的趋势。
在Matplotlib中,我们可以直接使用plt.plot()函数,当然需要提前把数据按照X轴的大小进行排序,要不画出来的折线图就无法按照X轴递增的顺序展示。
在Seaborn中,我们使用sns.lineplot (x, y, data=None)函数。
其中x、y是data中的下标。data就是我们要传入的数据,一般是DataFrame类型。
直方图
直方图是比较常见的视图,它是把横坐标等分成了一定数量的小区间,这个小区间也叫作“箱子”,然后在每个“箱子”内用矩形条(bars)展示该箱子的箱子数(也就是y值),这样就完成了对数据集的直方图分布的可视化。
在Matplotlib中,我们使用plt.hist(x, bins=10)函数,其中参数x是一维数组,bins代表直方图中的箱子数量,默认是10。
在Seaborn中,我们使用sns.distplot(x, bins=10, kde=True)函数。其中参数x是一维数组,bins代表直方图中的箱子数量,kde代表显示核密度估计,默认是True,我们也可以把kde设置为False,不进行显示。核密度估计是通过核函数帮我们来估计概率密度的方法
自学python,可以找我领取参考教程。我的抠抠前面是169,中间是0729,后面是198,数字连起来就行了
热力图
热力图,英文叫heat map,是一种矩阵表示方法,其中矩阵中的元素值用颜色来代表,不同的颜色代表不同大小的值。通过颜色就能直观地知道某个位置上数值的大小。另外你也可以将这个位置上的颜色,与数据集中的其他位置颜色进行比较。
热力图是一种非常直观的多元变量分析方法。
我们一般使用Seaborn中的sns.heatmap(data)函数,其中data代表需要绘制的热力图数据。
这里我们使用Seaborn中自带的数据集flights,该数据集记录了1949年到1960年期间,每个月的航班乘客的数量。
成对关系
如果想要探索数据集中的多个成对双变量的分布,可以直接采用sns.pairplot()函数。它会同时展示出DataFrame中每对变量的关系,另外在对角线上,你能看到每个变量自身作为单变量的分布情况。它可以说是探索性分析中的常用函数,可以很快帮我们理解变量对之间的关系。
pairplot函数的使用,就好像我们对DataFrame使用describe()函数一样方便,是数据探索中的常用函数。
自学python,可以找我领取参考教程。我的抠抠前面是169,中间是0729,后面是198,数字连起来就行了
关于本次Python可视化的学习,我希望你能掌握:
视图的分类,以及可以从哪些维度对它们进行分类;
十种常见视图的概念,以及如何在Python中进行使用,都需要用到哪些函数;
需要自己动手跑一遍案例中的代码,体验下Python数据可视化的过程。