CNN神经网络给图像分类(Matlab)
你要看你的图像是什么。如果是彩色数字,先转成灰度。用MNIST训练网络。如果是各种主题,用彩色的imageNET训练。如果你的数据量大到足以与数据集媲美,那么直接用你的数据训练网络即可。
在流行的数据集上训练完,你需要固定卷积池化层,只训练后面的全连接层参数,用你自己的数据集。CNN一是调整网络结构,几层卷积几层池化,卷积的模板大小等。
而是在确定结构上调整参数,weightscale,learningrate,reg等。
你用CNN做图像分类,无非是把CNN当成学习特征的手段,你可以吧网络看成两部分,前面的卷积层学习图像基本-中等-高层特征,后面的全连接层对应普通的神经网络做分类。
需要学习的话,首先你去看UFLDL教程。然后cs231n与其问别人,首先你看了imageNet数据集了吗?对于把流行数据集与自己数据混合训练模型的方法。如果两种数据十分相似,也未尝不可。
但是对于流行数据集而言,自己的标注数据量一般不会太大,如果是1:1000,1:100这种比例,那么可能不加自己的数据,完全用数据集训练的模型就能得到一个还好的结果。
如果自己的数据和数据集有些差别,那混在一起我认为自己的是在用自己的数据当做噪声加到数据集中。
cnn认为图像是局部相关的,而欺骗CNN的方法则主要出于,自然图像分布在一种流形结构中,训练的模型需要这种流形假设,而人工合成的图像由于添加非自然噪点,不满足模型假设,所以能用肉眼难分辨的噪声严重干扰分类结果。
如果二者相差过大,数据集是一种分布,你的数据是另一种,放到一起训练,我没试过,但我认为结果不会太好。这时候只能把数据集用来训练cnn的特征提取能力。而后用于分类的全连接层,视你的数据量调整规模。