将此图作为参考,假设我想要0到5之间的最长路径。
那将是:0-> 1-> 3-> 2-> 4-> 6-> 5
有什么好的算法吗?我已经搜索过,却没有发现我能理解的任何东西。
我已经找到了最短路径(0-> 1-> 2-> 4-> 6-> 5)的大量算法,并且已经成功实现了它们。
也许我是问题所在,但我想另外考虑一下:)
任何帮助都将受到欢迎
参考方案
这个问题是NP-Hard(从哈密顿路径到您的问题有一个简单的减少,而哈密顿路径搜索被称为NP-哈德)。这意味着没有针对此问题的多项式解(除非P = NP)。
如果需要精确的解决方案,则可以使用动态编程(状态的指数数量):状态为(mask of visited vertices, last_vertex),值为true或false。如果mask和新顶点之间存在边,则过渡将添加不在last_vertex中的新顶点。它具有O(2^n * n^2)时间复杂度,仍然比O(n!)回溯更好。
这是动态编程解决方案的伪代码:
f = array of (2 ^ n) * n size filled with false values
f(1 << start, start) = true
for mask = 0 ... (1 << n) - 1:
for last = 0 ... n - 1:
for new = 0 ... n - 1:
if there is an edge between last and new and mask & (1 << new) == 0:
f(mask | (1 << new), new) |= f(mask, last)
res = 0
for mask = 0 ... (1 << n) - 1:
if f(mask, end):
res = max(res, countBits(mask))
return res
还有更多关于从哈密顿路径到此问题的约简:
def hamiltonianPathExists():
found = false
for i = 0 ... n - 1:
for j = 0 ... n - 1:
if i != j:
path = getLongestPath(i, j) // calls a function that solves this problem
if length(path) == n:
found = true
return found
这是一个Java实现(我没有正确测试,因此可能包含错误):
/**
* Finds the longest path between two specified vertices in a specified graph.
* @param from The start vertex.
* @param to The end vertex.
* @param graph The graph represented as an adjacency matrix.
* @return The length of the longest path between from and to.
*/
public int getLongestPath(int from, int to, boolean[][] graph) {
int n = graph.length;
boolean[][] hasPath = new boolean[1 << n][n];
hasPath[1 << from][from] = true;
for (int mask = 0; mask < (1 << n); mask++)
for (int last = 0; last < n; last++)
for (int curr = 0; curr < n; curr++)
if (graph[last][curr] && (mask & (1 << curr)) == 0)
hasPath[mask | (1 << curr)][curr] |= hasPath[mask][last];
int result = 0;
for (int mask = 0; mask < (1 << n); mask++)
if (hasPath[mask][to])
result = Math.max(result, Integer.bitCount(mask));
return result;
}