python中lstm模型参数设定解释 lstm pytorch参数_python中lstm模型参数设定解释

self.lstm = nn.LSTM(input_size=n_class, hidden_size=n_hidden, num_layers=n_layers)
输入网络的维度数:26,隐层维度:128,lstm层数:n_layers:1

LSTM: 单向LSTM,D=1
input:[3, 10, 26] sequence len=3, batch=10, input_size=26
# 可以理解为,sequence length有多长就有几个上图中的F
h0:[1, 10, 128] n_layers = 1, batch=10, hidden_size=128
c0:[1, 10, 128] n_layers = 1, batch=10, hidden_size=128
输入,3个细胞单元作为输入,每个细胞单元接收26维的输入,一个batch为10条数据

输出:output, (h_n, c_n)
output: [3, 10, 128],3个细胞单元,一批次10个数据,隐层维度为128,输出最后一层每个细胞单元的隐层输出;

output保存了最后一层,每个time step的输出h
h_n保存每一层,最后一个time-step的输出h
c_n保存每一层,最后一个time-step的输出c

                 

python中lstm模型参数设定解释 lstm pytorch参数_初始化_02

 官方给定实例:

# Examples::

# 初始化模型
rnn = nn.LSTM(10, 20, 2) # 输入特征的维度:10,隐层维度:20 ,LSTM层数:2
# 输入数据格式
input = torch.randn(5, 3, 10)  # 句子长度:5,batch_size:3,输入特征的维度:10
# 隐层结构
h0 = torch.randn(2, 3, 20)  # LSTM层:2,batch_size:3,隐层参数维度:20
# 细胞单元结构
c0 = torch.randn(2, 3, 20)  # 同上
# 输出结构
output, (hn, cn) = rnn(input, (h0, c0))
"""
    output:LSTM最后一层隐状态的输出,维度:(5, 3, 20)
    hn:最后一个timestep的隐状态结果,维度:(1, 3, 20)
    cn:最后一个timestep的细胞单元的结果,维度:(1, 3, 20)

"""

BiLSTM-torch调用:

# 单层变双层,单向变为双向
# 举例解决:
# 单层Bilstm, 输入数据,一个batch包含26条数据,每条数据为27x27,类别数为27,每个单元包含隐藏单元为5
# 定义BiLSTM时:
bilstm = nn.LSTM(input_size=27, hidden_size=5, bidirectional=True)
# 输入input维度应为:[sequence length, batch size, input_size]即需通过torch.transpose(0, 1)改变维度
inputs shape: [27, 26, 27]
# 隐藏定义:[Bilstm:2 x 层数默认:1, batch_size:26,  每个单元包含隐藏单元:5]
h0 shape: [2x1, 26, 5]
c0 shape: [2x1, 26, 5] #细胞状态同上

output, (h_n, c_n) = bilstm(inputs, (h0, c0)
#同lstm,output包含最后一层所有细胞的隐层输出,
# [sequence length, batch size, H_{out}*2]
output shape: [27, 26, 5*2]
# h_n 包含最后一个细胞的最后一个时间步的隐层输出
# [D * num_layers, batch size, H_{out}]
h_n shape: [2, 26, 5]
# c_n同上
c_n shape: [2, 26, 5]

pytorch实现LSTM例子:

import numpy as np
import torch
import torch.nn as nn
from torch.nn.modules import loss, module
import torch.optim as optim


def make_batch():
    input_batch, target_batch = [], []

    for seq in seq_data:
        input = [word_dict[n] for n in seq[:-1]]  #到最后一个字母
        target = word_dict[seq[-1]]  # 最后一个标签,预测最后一个单词
        input_batch.append(np.eye(n_class)[input])
        target_batch.append(target)
        print("input:{}, target:{}".format(input, target))

    return input_batch, target_batch


"""
    np.eye(3):代表一个维度为3的单位矩阵
    np.eye(x)[N]: 代表取出维度为x的单位矩阵的第N行,用于构造one-hot表示

    x.transpose(0, 1):交换0,1两个维度
    例:x为[10, 3, 26] x.transpose(0, 1)为[3, 10 ,26]  # 有啥意义

    Examples::

        >>> rnn = nn.LSTM(10, 20, 2)  #
        input_size: The number of expected features in the input `x`
        hidden_size: The number of features in the hidden state `h`
        num_layers: Number of recurrent layers. E.g., setting ``num_layers=2``
        
        >>> input = torch.randn(5, 3, 10) :  N,L,H_{in}或L,N,H_{in}
        输入向量的长度, 一次传入多少条数据,单词向量的维度
        L ={} & \text{sequence length} \\
        N ={} & \text{batch size} \\
        H_{in} ={} & \text{input\_size} \\
        
        >>> h0 = torch.randn(2, 3, 20)
         (D * \text{num\_layers}, N, H_{out}), BiLSTM: D=2, LSTM: D=1
        H_{out} ={} & \text{proj\_size if } \text{proj\_size}>0 \text{ otherwise hidden\_size} \\\end{aligned}
        
        >>> c0 = torch.randn(2, 3, 20)
        (D * \text{num\_layers}, N, H_{cell})
        H_{cell} ={} & \text{hidden\_size} \\
        
        >>> output, (hn, cn) = rnn(input, (h0, c0))
        output保存了最后一层,每个time step的输出h,如果是双向LSTM,每个time step的输出h = [h正向, h逆向] (同一个time step的正向和逆向的h连接起来)。
        h_n保存了每一层,最后一个time step的输出h,如果是双向LSTM,单独保存前向和后向的最后一个time step的输出h。
        c_n与h_n一致,只是它保存的是c的值。

        output是一个三维的张量,第一维表示序列长度,第二维表示一批的样本数(batch),第三维是 hidden_size(隐藏层大小) * num_directions 
"""


class TextLSTM(nn.Module):
    def __init__(self):
        super(TextLSTM, self).__init__()

        self.lstm = nn.LSTM(input_size=n_class, hidden_size=n_hidden)
        # input_size:26
        # hidden_size:128
        # mode:'LSTM'
        # num_layers:1
        self.W = nn.Linear(
            n_hidden, n_class, bias=False
        )  #LSTM+一个线性层加偏置,最后softmax输出 # out_features:26 # in_features:128

        self.b = nn.Parameter(torch.ones(
            [n_class]))  # P的大小写有何影响,nn.parameter报错,必须得是nn.Parameter

    def forward(self, x):
        # print('x:{}, x_size:{}'.format(
        #     x, x.size()))  # shape:torch.Size([10, 3, 26])
        input = x.transpose(0, 1)  # torch.Size([3, 10, 26])  ****有何意义
        # print('input:{}, input_size:{}'.format(input, input.size()))

        hidden_state = torch.zeros(1, len(x),
                                   n_hidden)  # shape:torch.Size([1, 10, 128])
        cell_state = torch.zeros(1, len(x),
                                 n_hidden)  # shape:torch.Size([1, 10, 128])
        # 为啥少了一个维度啊????
        outputs, (_, _) = self.lstm(input, (hidden_state, cell_state))
        # _1,2: torch.Size([1, 10, 128])
        # print("outputs_size:{}".format(
        #     outputs.size()))  # torch.Size([3, 10, 128])
        outputs = outputs[-1]  # outputs: torch.Size([10, 128])
        # 使用outputs的原因:保留最后一层所有隐层的输出,可以尽可能包含所有的局部信息,减少RNN的梯度消失、最后输出的向量与较后的cell有关
        model = self.W(
            outputs
        ) + self.b  # shape:torch.Size([10, 26])  batch_size, n_class
        # print("model:{}".format(model))
        return model


if __name__ == '__main__':
    n_step = 3
    n_hidden = 128

    char_arr = [c for c in 'abcdefghijklmnopqrstuvwxyz']
    word_dict = {w: i for i, w in enumerate(char_arr)}
    number_dict = {i: w for i, w in enumerate(char_arr)}
    print(number_dict)
    # print(word_dict)

    n_class = len(word_dict)

    seq_data = [
        'make', 'need', 'coal', 'word', 'love', 'hate', 'live', 'home', 'hash',
        'star'
    ]
    model = TextLSTM()

    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=0.001)

    input_batch, target_batch = make_batch()  # 原本shape[10, 3], [10]
    input_batch = torch.FloatTensor(
        input_batch
    )  # shape:torch.Size([10, 3, 26])  10条数据,每条数据长度为3,one-hot表示维度为26
    target_batch = torch.LongTensor(target_batch)

    for epoch in range(1000):
        optimizer.zero_grad()

        output = model(input_batch)
        loss1 = criterion(output, target_batch)

        if (epoch + 1) % 100 == 0:
            print('Epoch:', '%04d' % (epoch + 1), 'cost =',
                  '{:.6f}'.format(loss1))

        loss1.backward()
        optimizer.step()


    inputs = input_batch[:4]
    # inputs = inputs.unsqueeze(0)
    print('inputs:{}, inputs_size:{}'.format(inputs, np.shape(inputs)))
    print("mdoel:{}".format(model))  #model就是一个输入26维,输出128维的lstm
    print("mdoel(inputs):{}".format(model(inputs)))
    predict = model(inputs).data.max(1, keepdim=True)[1]
    # output = model(input_batch)
    print("predict:{}".format(predict))