我们在文章里分析了flink提交single job到yarn集群上的代码,flink在1.5版本后对整个框架的deploy方式重构了全新的流程(参考https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=65147077),本文基于flink1.6.1版本源码分析一下新模式在yarn的整个流程。

 

一 初始化

客户端本地整个初始化流程与差不多,由于newmode的关系,几个有区别的地方为

1 final ClusterDescriptor<T> clusterDescriptor = customCommandLine.createClusterDescriptor(commandLine); ,返回的具体对象类为YarnClusterDescriptor
2 ClientFrontend.runProgram方法会进入if (isNewMode && clusterId == null && runOptions.getDetachedMode()) {..方法块,调用路径为



YarnClusterDescriptor.deployJobCluster->AbstractYarnClusterDescriptor.deployInternal->startAppMaster



这个时候我们发现AM的启动类变成了YarnJobClusterEntrypoint

 

二 YarnJobClusterEntrypoint

 YarnJobClusterEntrypoint的main函数是整个AM进程的启动入口,在方法的最后会调用其祖父类ClusterEntrypoint的startCluster方法开启整个集群组件的启动过程。

具体调用链路为startCluster->runCluster->startClusterComponents



protected void startClusterComponents(
			Configuration configuration,
			RpcService rpcService,
			HighAvailabilityServices highAvailabilityServices,
			BlobServer blobServer,
			HeartbeatServices heartbeatServices,
			MetricRegistry metricRegistry) throws Exception {
		synchronized (lock) {
			dispatcherLeaderRetrievalService = highAvailabilityServices.getDispatcherLeaderRetriever();

			resourceManagerRetrievalService = highAvailabilityServices.getResourceManagerLeaderRetriever();

			LeaderGatewayRetriever<DispatcherGateway> dispatcherGatewayRetriever = new RpcGatewayRetriever<>(
				rpcService,
				DispatcherGateway.class,
				DispatcherId::fromUuid,
				10,
				Time.milliseconds(50L));

			LeaderGatewayRetriever<ResourceManagerGateway> resourceManagerGatewayRetriever = new RpcGatewayRetriever<>(
				rpcService,
				ResourceManagerGateway.class,
				ResourceManagerId::fromUuid,
				10,
				Time.milliseconds(50L));

			// TODO: Remove once we have ported the MetricFetcher to the RpcEndpoint
			final ActorSystem actorSystem = ((AkkaRpcService) rpcService).getActorSystem();
			final Time timeout = Time.milliseconds(configuration.getLong(WebOptions.TIMEOUT));

			webMonitorEndpoint = createRestEndpoint(
				configuration,
				dispatcherGatewayRetriever,
				resourceManagerGatewayRetriever,
				transientBlobCache,
				rpcService.getExecutor(),
				new AkkaQueryServiceRetriever(actorSystem, timeout),
				highAvailabilityServices.getWebMonitorLeaderElectionService());

			LOG.debug("Starting Dispatcher REST endpoint.");
			webMonitorEndpoint.start();

			resourceManager = createResourceManager(
				configuration,
				ResourceID.generate(),
				rpcService,
				highAvailabilityServices,
				heartbeatServices,
				metricRegistry,
				this,
				clusterInformation,
				webMonitorEndpoint.getRestBaseUrl());

			jobManagerMetricGroup = MetricUtils.instantiateJobManagerMetricGroup(metricRegistry, rpcService.getAddress());

			final HistoryServerArchivist historyServerArchivist = HistoryServerArchivist.createHistoryServerArchivist(configuration, webMonitorEndpoint);

			dispatcher = createDispatcher(
				configuration,
				rpcService,
				highAvailabilityServices,
				resourceManager.getSelfGateway(ResourceManagerGateway.class),
				blobServer,
				heartbeatServices,
				jobManagerMetricGroup,
				metricRegistry.getMetricQueryServicePath(),
				archivedExecutionGraphStore,
				this,
				webMonitorEndpoint.getRestBaseUrl(),
				historyServerArchivist);

			LOG.debug("Starting ResourceManager.");
			resourceManager.start();
			resourceManagerRetrievalService.start(resourceManagerGatewayRetriever);

			LOG.debug("Starting Dispatcher.");
			dispatcher.start();
			dispatcherLeaderRetrievalService.start(dispatcherGatewayRetriever);
		}
	}



从上述代码里可以发现,AM里面包含两个重要的全新组件:ResourceManager和Dispatcher

 

在FLIP6的改进下,Resource这个全新的角色定义如下:

The main tasks of the ResourceManager are

  • Acquire new TaskManager (or slots) by starting containers, or allocating them to a job
  • Giving failure notifications to JobManagers and TaskManagers
  • Caching TaskManagers (containers) to be reused, releasing TaskManagers (containers) that are unused for a certain period.

大体来说就是由ResourceManager负责和YARN集群进行资源申请上的沟通,并给指定JobManager分配特定

idea flink插件连接flink服务器_大数据

 

aa

在yarn模式下,ResourceManager对应的实现类为YarnResourceManager,在这个类的initialize方法中,我们可以发现它实例化了两个client,resourceManagerClient和nodeManagerClient,这两个客户端分别包含了Yarn框架的AMRMClientAsync和NMClient,分别用来负责和Yarn的ResourceManager和NodeManager通信。




idea flink插件连接flink服务器_初始化_02

idea flink插件连接flink服务器_大数据_03

@Override
    protected void initialize() throws ResourceManagerException {
        try {
            resourceManagerClient = createAndStartResourceManagerClient(
                yarnConfig,
                yarnHeartbeatIntervalMillis,
                webInterfaceUrl);
        } catch (Exception e) {
            throw new ResourceManagerException("Could not start resource manager client.", e);
        }

        nodeManagerClient = createAndStartNodeManagerClient(yarnConfig);
    }


View Code


 

关于Dispatcher的定义如下,它取代了以前由jobManager负责的提交job给集群的工作,并且预期将来可以由一个dispatcher提交任务给多个集群。

The new design includes the concept of a Dispatcher. The dispatcher accepts job submissions from clients and starts the jobs on their behalf on a cluster manager.

The dispatcher is introduced because:

  • Some cluster managers need a central job spawning and monitoring instance
  • It subsumes the role of the standalone JobManager, waiting for jobs to be submitted

idea flink插件连接flink服务器_大数据_04

在本文的条件下,Dispatcher具体的实现类为MiniDispatcher,在dispatcher.start();调用后,整个调用链经过了



leaderElectionService.start(this)->
 
 
ZooKeeperLeaderElectionService.start->
 
 
ZooKeeperLeaderElectionService.isLeader->
 
 
Dispatcher.grantLeadership->
 
 
tryAcceptLeadershipAndRunJobs->
 
 
runJob->
 
 
createJobManagerRunner
 
 
调到了DisPatcher的createJobManagerRunner方法。



private CompletableFuture<JobManagerRunner> createJobManagerRunner(JobGraph jobGraph) {
		final RpcService rpcService = getRpcService();

		final CompletableFuture<JobManagerRunner> jobManagerRunnerFuture = CompletableFuture.supplyAsync(
			CheckedSupplier.unchecked(() ->
				jobManagerRunnerFactory.createJobManagerRunner(
					ResourceID.generate(),
					jobGraph,
					configuration,
					rpcService,
					highAvailabilityServices,
					heartbeatServices,
					blobServer,
					jobManagerSharedServices,
					new DefaultJobManagerJobMetricGroupFactory(jobManagerMetricGroup),
					fatalErrorHandler)),
			rpcService.getExecutor());

		return jobManagerRunnerFuture.thenApply(FunctionUtils.uncheckedFunction(this::startJobManagerRunner));
	}



  

上述代码可以分为两个部分,第一部分经过DefaultJobManagerRunnerFactory.createJobManagerRunner->new JobManagerRunner->new   JobMaster初始化了JobMaster对象。

第二部分经过



startJobManagerRunner->
 
 
JobManagerRunner.start->
 
 
ZooKeeperLeaderElectionService.start->



ZooKeeperLeaderElectionService.isLeader->

JobManagerRunner.grantLeadership->
verifyJobSchedulingStatusAndStartJobManager->

jobMaster.start->



startJobExecution->



private Acknowledge startJobExecution(JobMasterId newJobMasterId) throws Exception {
		validateRunsInMainThread();

		checkNotNull(newJobMasterId, "The new JobMasterId must not be null.");

		if (Objects.equals(getFencingToken(), newJobMasterId)) {
			log.info("Already started the job execution with JobMasterId {}.", newJobMasterId);

			return Acknowledge.get();
		}

		setNewFencingToken(newJobMasterId);

		startJobMasterServices();

		log.info("Starting execution of job {} ({})", jobGraph.getName(), jobGraph.getJobID());

		resetAndScheduleExecutionGraph();

		return Acknowledge.get();
	}

	private void startJobMasterServices() throws Exception {
		// start the slot pool make sure the slot pool now accepts messages for this leader
		slotPool.start(getFencingToken(), getAddress());

		//TODO: Remove once the ZooKeeperLeaderRetrieval returns the stored address upon start
		// try to reconnect to previously known leader
		reconnectToResourceManager(new FlinkException("Starting JobMaster component."));

		// job is ready to go, try to establish connection with resource manager
		//   - activate leader retrieval for the resource manager
		//   - on notification of the leader, the connection will be established and
		//     the slot pool will start requesting slots
		resourceManagerLeaderRetriever.start(new ResourceManagerLeaderListener());
	}



JobMaster首先调用startJobMasterServices进行连接flink resource manager ,启动jobmanager服务并注册等操作。然后通过resetAndScheduleExecutionGraph执行任务资源的初始化申请。resetAndScheduleExecutionGraph方法首先调用createAndRestoreExecutionGraph生成了整个任务的executiongraph,然后通过



scheduleExecutionGraph->
 
 
ExecutionGraph.scheduleForExecution->
 
 
scheduleEager->
 
 
ExecutionJobVertex.allocateResourcesForAll->
 
 
Execution.allocateAndAssignSlotForExecution->
 
 
ProviderAndOwner.allocateSlot->
 
 
SlotPool.allocateSlot->
 
 
allocateMultiTaskSlot
 
 
提出对任务slot资源的申请
 
 
SlotPool.requestSlotFromResourceManager->
 
 
ResourceManager.requestSlot->
 
 
SlotManager.registerSlotRequest->



internalRequestSlot->
ResourceActionsImpl.allocateResource->
YarnResourceManager.startNewWorker->

申请启动新的TaskManager




idea flink插件连接flink服务器_初始化_02

idea flink插件连接flink服务器_大数据_03

@Override
    public void startNewWorker(ResourceProfile resourceProfile) {
        log.info("startNewWorker");
        // Priority for worker containers - priorities are intra-application
        //TODO: set priority according to the resource allocated
        Priority priority = Priority.newInstance(generatePriority(resourceProfile));
        int mem = resourceProfile.getMemoryInMB() < 0 ? defaultTaskManagerMemoryMB : resourceProfile.getMemoryInMB();
        int vcore = resourceProfile.getCpuCores() < 1 ? defaultCpus : (int) resourceProfile.getCpuCores();
        Resource capability = Resource.newInstance(mem, vcore);
        requestYarnContainer(capability, priority);
    }

    private void requestYarnContainer(Resource resource, Priority priority) {
        resourceManagerClient.addContainerRequest(new AMRMClient.ContainerRequest(resource, null, null, priority));

        // make sure we transmit the request fast and receive fast news of granted allocations
        resourceManagerClient.setHeartbeatInterval(FAST_YARN_HEARTBEAT_INTERVAL_MS);

        numPendingContainerRequests++;

        log.info("Requesting new TaskExecutor container with resources {}. Number pending requests {}.",
            resource,
            numPendingContainerRequests);
    }


View Code


 

 上述代码就是flink resourcemanager 通过yarn客户端与yarn通信申请taskmanager部分代码

 



@Override
	public void onContainersAllocated(List<Container> containers) {
		log.info("onContainersAllocated");
		runAsync(() -> {
			for (Container container : containers) {
				log.info(
					"Received new container: {} - Remaining pending container requests: {}",
					container.getId(),
					numPendingContainerRequests);

				if (numPendingContainerRequests > 0) {
					numPendingContainerRequests--;

					final String containerIdStr = container.getId().toString();
					final ResourceID resourceId = new ResourceID(containerIdStr);

					workerNodeMap.put(resourceId, new YarnWorkerNode(container));

					try {
						// Context information used to start a TaskExecutor Java process
						ContainerLaunchContext taskExecutorLaunchContext = createTaskExecutorLaunchContext(
							container.getResource(),
							containerIdStr,
							container.getNodeId().getHost());

						nodeManagerClient.startContainer(container, taskExecutorLaunchContext);
					} catch (Throwable t) {
						log.error("Could not start TaskManager in container {}.", container.getId(), t);

						// release the failed container
						workerNodeMap.remove(resourceId);
						resourceManagerClient.releaseAssignedContainer(container.getId());
						// and ask for a new one
						requestYarnContainer(container.getResource(), container.getPriority());
					}
				} else {
					// return the excessive containers
					log.info("Returning excess container {}.", container.getId());
					resourceManagerClient.releaseAssignedContainer(container.getId());
				}
			}

			// if we are waiting for no further containers, we can go to the
			// regular heartbeat interval
			if (numPendingContainerRequests <= 0) {
				resourceManagerClient.setHeartbeatInterval(yarnHeartbeatIntervalMillis);
			}
		});
	}



  

am客户端在taskmanager的客户端里会设置启动的主类org.apache.flink.yarn.YarnTaskExecutorRunner